Genetic Variability of CYP2C8, CYP2C9, and CYP3A4 Across European Populations: Implications for Pharmacogenetics
DOI:
https://doi.org/10.12775/QS.2026.49.67697Keywords
cytochrome P450, CYP2C8, CYP2C9, CYP3A4, allele frequency, genetic polymorphismAbstract
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins responsible for the metabolism of numerous important compounds. In humans, they are responsible for nearly 80% of oxidative reactions and approximately 50% of total drug elimination, mainly within the CYP1–CYP3 families. The CYP3A4 isoenzyme, involved in the metabolism of around 50% of drugs used in clinical practice, along with the highly polymorphic CYP2C9 and CYP2C8 genes, are key members of the cytochrome P450 subfamily. Their genetic variability, which may result in abolished, quantitatively or qualitatively altered or enhanced metabolism, varies among populations and geographical regions. This review presents the frequency and diversity of CYP2C8, CYP2C9 and CYP3A4 alleles across European countries.
References
1. Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295. https://doi.org/10.1080/03602530902843483
2. Esteves F, Rueff J, Kranendonk M. The central role of cytochrome P450 in xenobiotic metabolism: a brief review on a fascinating enzyme family. J Xenobiot. 2021;11(3):94–114. https://doi.org/10.3390/jox11030007
3. Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol. 2019;12(5):407–42. https://doi.org/10.1080/17512433.2019.1593360
4. Ingelman-Sundberg M. Cytochrome P450 polymorphism: from evolution to clinical use. Adv Pharmacol. 2022;95:393–416. https://doi.org/10.1016/bs.apha.2022.05.001
5. Abdelmonem BH, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, et al. Decoding the role of CYP450 enzymes in metabolism and disease: a comprehensive review. Biomedicines. 2024;12(7):1467. https://doi.org/10.3390/biomedicines12071467
6. Zhang Y, Wang Z, Wang Y, Jin W, Zhang Z, Jin L, et al. CYP3A4 and CYP3A5: the crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ. 2024;12:e18636. https://doi.org/10.7717/peerj.18636
7. Buzoianu AD, Trifa AP, Mureşanu DF, Crişan S. Analysis of CYP2C9*2, CYP2C9*3, and VKORC1 -1639G>A polymorphisms in a population from South-Eastern Europe. J Cell Mol Med. 2012;16(12):2919–24. https://doi.org/10.1111/j.1582-4934.2012.01607.x
8. Jarrar YB, Lee SJ. Molecular functionality of CYP2C9 polymorphisms and their influence on drug therapy. Drug Metabol Drug Interact. 2014;29(4):211–20. https://doi.org/10.1515/dmdi-2014-0010
9. Camara MD, Zhou Y, De Sousa TN, Gil JP, Djimde AA, Lauschke VM. Meta-analysis of the global distribution of clinically relevant CYP2C8 alleles and their inferred functional consequences. Hum Genomics. 2024;18(1):40. https://doi.org/10.1186/s40246-024-00606-5
10. Neyshaburinezhad N, Ghasim H, Rouini M, Daali Y, Ardakani YH. Frequency of important CYP450 enzyme gene polymorphisms in the Iranian population in comparison with other major populations: a comprehensive review of the human data. J Pers Med. 2021;11(8):804. https://doi.org/10.3390/jpm11080804
11. Zhou Y, Lauschke VM. The genetic landscape of major drug metabolizing cytochrome P450 genes: an updated analysis of population-scale sequencing data. Pharmacogenomics J. 2022;22(5–6):284–93. https://doi.org/10.1038/s41397-022-00283-w
12. Lauschke VM, Ingelman-Sundberg M. Prediction of drug response and adverse drug reactions: from twin studies to next generation sequencing. Eur J Pharm Sci. 2019;130:65–77. https://doi.org/10.1016/j.ejps.2019.01.026
13. Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: a meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700. https://doi.org/10.1002/cpt.690
14. McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012;8(3):371–82. https://doi.org/10.1517/17425255.2012.658370
15. Zhou XY, Hu XX, Wang CC, Lu XR, Chen Z, Liu Q, et al. Enzymatic activities of CYP3A4 allelic variants on quinine 3-hydroxylation in vitro. Front Pharmacol. 2019;10:591. https://doi.org/10.3389/fphar.2019.00591
16. Céspedes-Garro C, Fricke-Galindo I, Naranjo ME, Rodrigues-Soares F, Fariñas H, de Andrés F, et al. Worldwide interethnic variability and geographical distribution of CYP2C9 genotypes and phenotypes. Expert Opin Drug Metab Toxicol. 2015;11(12):1893–905. https://doi.org/10.1517/17425255.2015.1093156
17. Paganotti GM, Gramolelli S, Tabacchi F, Russo G, Modiano D, Coluzzi M, et al. Distribution of human CYP2C8*2 allele in three different African populations. Malar J. 2012;11:125. https://doi.org/10.1186/1475-2875-11-125
18. Sukprasong R, Chuwongwattana S, Koomdee N, Jantararoungtong T, Prommas S, Jinda P, et al. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population. Sci Rep. 2021;11(1):12343. https://doi.org/10.1038/s41598-021-91898-3
19. Polimanti R, Piacentini S, Manfellotto D, Fuciarelli M. Human genetic variation of CYP450 superfamily: analysis of functional diversity in worldwide populations. Pharmacogenomics. 2012;13(16):1951–60. https://doi.org/10.2217/pgs.12.170
20. Jaja C, Burke W, Thummel K, Edwards K, Veenstra DL. Cytochrome P450 enzyme polymorphism frequency in indigenous and Native American populations: a systematic review. Community Genet. 2008;11(3):141–9. https://doi.org/10.1159/000116874
21. Morais SL, Gonçalves TFC, Delerue-Matos C, Ferrreira-Fernandes H, Pinto GR, Domingues VF, et al. Cytochrome P450 polymorphisms with impact in cardiovascular drugs metabolisms in European populations. Hum Gene. 2022;33:201027. https://doi.org/10.1016/j.humgen.2022.201027
22. Sánchez-Diz P, Estany-Gestal A, Aguirre C, Blanco A, Carracedo A, Ibáñez L, et al. Prevalence of CYP2C9 polymorphisms in the south of Europe. Pharmacogenomics J. 2009;9(5):306–10. https://doi.org/10.1038/tpj.2009.24
23. Pedersen RS, Brasch-Andersen C, Sim SC, Bergmann TK, Halling J, Petersen MS, et al. Linkage disequilibrium between the CYP2C19*17 allele and wildtype CYP2C8 and CYP2C9 alleles: identification of CYP2C haplotypes in healthy Nordic populations. Eur J Clin Pharmacol. 2010;66(12):1199–205. https://doi.org/10.1007/s00228-010-0863-7
24. Zhou Y, Nevosadová L, Eliasson E, Hammarsten O, Olsson T, Oscarsson J, et al. Global distribution of functionally important CYP2C9 alleles and their inferred metabolic consequences. Hum Genomics. 2023;17:15. https://doi.org/10.1186/s40246-023-00463-y
25. Sipeky C, Lakner L, Szabo M, Takacs I, Tamasi V, Polgar N, et al. Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies. Blood Cells Mol Dis. 2009;43(3):239–42. https://doi.org/10.1016/j.bcmd.2009.07.005
26. Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol. 2007;21(4):419–26. https://doi.org/10.1111/j.1472-8206.2007.00499.x
27. Aynacioglu AS, Brockmöller J, Bauer S, Sachse C, Güzelbey P, Ongen Z, et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol. 1999;48(3):409–15. https://doi.org/10.1046/j.1365-2125.1999.00010.x
28. Ganoci L, Božina T, Mirošević Skvrce N, Lovrić M, Mas P, Božina N. Genetic polymorphisms of cytochrome P450 enzymes: CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 in the Croatian population. Drug Metab Pers Ther. 2017;32(1):11–21. https://doi.org/10.1515/dmpt-2016-0036
29. Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol. 2005;97(4):249–56. https://doi.org/10.1111/j.1742-7843.2005.pto_138.x
30. Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmöller J. Effect of genetic polymorphisms in cytochrome P450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs. Clin Pharmacokinet. 2005;44(12):1209–25. https://doi.org/10.2165/00003088-200544120-00002
31. Dawed AY, Donnelly L, Tavendale R, Carr F, Leese G, Palmer CNA, et al. CYP2C8 and SLCO1B1 variants and therapeutic response to thiazolidinediones in patients with type 2 diabetes. Diabetes Care. 2016;39(11):1902–8. https://doi.org/10.2337/dc16-0951
32. Hertz DL, Roy S, Motsinger-Reif AA, Drobish A, Clark LS, McLeod HL, et al. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann Oncol. 2013;24(6):1472–8. https://doi.org/10.1093/annonc/mdt018
33. Yee J, Heo Y, Kim H, Yoon HY, Song G, Gwak HS. Association between the CYP2C9 genotype and hypoglycemia among patients with type 2 diabetes receiving sulfonylurea treatment: a meta-analysis. Clin Ther. 2021;43(5):836–43. https://doi.org/10.1016/j.clinthera.2021.03.012
34. Kirchheiner J, Meineke I, Müller G, Roots I, Brockmöller J. Influence of CYP2C9 and CYP2D6 polymorphisms on the pharmacokinetics of nateglinide in genotyped healthy volunteers. Clin Pharmacokinet. 2004;43(4):267–78. https://doi.org/10.2165/00003088-200443040-00004
35. Zobdeh F, Eremenko II, Akan MA, Tarasov VV, Chubarev VN, Schiöth HB, et al. Pharmacogenetics and pain treatment with a focus on non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants: a systematic review. Pharmaceutics. 2022;14(6):1190. https://doi.org/10.3390/pharmaceutics14061190
36. Wang F, Zhang X, Wang Y, Chen Y, Lu H, Meng X, et al. Activation/inactivation of anticancer drugs by CYP3A4: influencing factors for personalized cancer therapy. Drug Metab Dispos. 2023;51(5):543-559. https://doi.org/10.1124/dmd.122.001166
37. Hussain Y, Khan H. Immunosuppressive drugs. In: Rezaei N, editor. Encyclopedia of infection and immunity. Amsterdam: Elsevier; 2022. p. 726–40. https://doi.org/10.1016/B978-0-12-818731-9.00164-1
38. Kitzmiller JP, Mikulik EB, Dauki AM, Mukherjee C, Luzum JA. Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmgenomics Pers Med. 2016;9:97-106. https://doi.org/10.2147/PGPM.S86464
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Karolina Borówka, Paulina Tymińska, Julia Frączek, Natlia Kawka, Grzegorz Machnik

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 25
Number of citations: 0