The Role of Gut Microbiota in the Pathogenesis and Treatment of Obesity: A Contemporary Review
DOI:
https://doi.org/10.12775/QS.2026.50.67663Keywords
obesity, gut microbiota, dysbiosis, diet, physical activityAbstract
Background. Obesity is a chronic disease and a global health problem contributing to increased mortality. The gut microbiota supports energy homeostasis and modulates inflammation and appetite, and may influence obesity development.
Aim. To summarize evidence on the gut microbiota in obesity pathogenesis and microbiome-modulating treatments (diet, physical activity, pre-/pro-/synbiotics, postbiotics, selected pharmacotherapies).
Materials and methods. Major biomedical databases were searched for experimental and clinical studies on microbiota composition/function in obesity, dysbiosis-related mechanisms, and effects of interventions on microbiota and metabolic outcomes.
Results. Obesity is associated with heterogeneous but recurring alterations in microbial diversity, composition and function, including SCFA- and bile acid–related pathways and markers of impaired intestinal barrier function. Mediterranean/plant-based patterns, higher fiber intake and selected biotics most consistently improve these profiles; physical activity and some drugs show smaller, variable effects.
Conclusions. Dysbiosis may contribute to obesity via metabolic and inflammatory mechanisms, but findings are context-dependent, limiting the value of simple markers. Translation to practice requires standardized methods, robust biomarkers and personalized interventions integrated with sustained healthy diet and physical activity.
References
1. World Health Organization. Obesity and overweight [Internet]. 2024 [cited 2025 Dec 9]. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
2. World Health Organization. One in eight people are now living with obesity [Internet]. 2024 Mar 1 [cited 2025 Dec 9]. https://www.who.int/news/item/01-03-2024-one-in-eight-people-are-now-living-with-obesity
3. Patloka O, Komprda T, Franke G. Review of the relationships between human gut microbiome, diet, and obesity. Nutrients. 2024;16(23):3996. https://doi.org/10.3390/nu16233996
4. Elks CE, den Hoed M, Zhao JH, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne). 2012;3:29. https://doi.org/10.3389/fendo.2012.00029
5. Stunkard AJ, Foch TT, Hrubec Z. The body-mass index of twins who have been reared apart. N Engl J Med. 1990;322(21):1483–1487. https://doi.org/10.1056/NEJM199005243222102
6. Min J, Chiu DT, Wang Y. Variation in the heritability of body mass index based on diverse twin studies: a systematic review. Obes Rev. 2013;14(11):871–882. https://doi.org/10.1111/obr.12062
7. Borrego-Ruiz A, Villanueva-Millán MJ, Fernández-García JC, et al. The gut microbiome in human obesity: a comprehensive overview. Biomedicines. 2023;13(9):2173. https://doi.org/10.3390/biomedicines13092173
8. Zhang K, Wu Z, Zhang H, et al. The complex link between the gut microbiome and obesity-associated metabolic diseases. Heliyon. 2024;10(9):e37609. https://doi.org/10.1016/j.heliyon.2024.e37609
9. Sasidharan Pillai S, Nair VK, John J, et al. Exploring the gut microbiota: key insights into its role in obesity and metabolic disorders. J Clin Endocrinol Metab. 2024;109(11):2709–2723. https://doi.org/10.1210/clinem/dgae499
10. Patra D, Basak S, Dinda A, et al. Recent insights of obesity-induced gut and adipose tissue dysbiosis. Front Mol Biosci. 2023;10:1224982. https://doi.org/10.3389/fmolb.2023.1224982
11. Dhanasekaran D, Kumar P, Lee Y, et al. Efficacy of microbiome-targeted interventions in obesity. Obes Rev. 2025;26(2):e13678. https://doi.org/10.1111/obr.13678
12. Baek KR, Kim HN, Seo MJ, et al. Using gut microbiota modulation as a precision strategy for obesity. Int J Mol Sci. 2025;26(13):6282. https://doi.org/10.3390/ijms26136282
13. Augustynowicz G, Rudzka A, Płecha M, et al. The role of gut microbiota in the development and treatment of obesity and overweight – a literature review. Nutrients. 2025;17(15):3093. https://doi.org/10.3390/nu17153093
14. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. https://doi.org/10.1126/science.1110591
15. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014
16. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol. 2010;12:304–314. https://doi.org/10.1111/j.1462-2920.2009.02066.x
17. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533. https://doi.org/10.1371/journal.pbio.1002533
18. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904. https://doi.org/10.1152/physrev.00045.2009
19. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787
20. Seed PC. The human mycobiome. Cold Spring Harb Perspect Med. 2014;5(5):a019810. https://doi.org/10.1101/cshperspect.a019810
21. Duller S, Moissl-Eichinger C. Archaea in the human microbiome and potential effects on human infectious disease. Emerg Infect Dis. 2024;30(8):1505–1513. https://doi.org/10.3201/eid3008.240181
22. Liu A, Gao W, Zhu Y, Hou X, Chu H. Gut non-bacterial microbiota: emerging link to irritable bowel syndrome. Toxins (Basel). 2022;14(9):596. https://doi.org/10.3390/toxins14090596
23. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16:341–352. https://doi.org/10.1038/nri.2016.42
24. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. https://doi.org/10.1038/4441022a
25. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–810. https://doi.org/10.1038/nature06244
26. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–1267. https://doi.org/10.1126/science.1223813
27. Tokarek J, Gadzinowska J, Młynarska E, Franczyk B, Rysz J. What is the role of gut microbiota in obesity prevalence? A few words about gut microbiota and its association with obesity and related diseases. Microorganisms. 2022;10:52. https://doi.org/10.3390/microorganisms10010052
28. Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13:1897212. https://doi.org/10.1080/19490976.2021.1897212
29. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. https://doi.org/10.2337/db07-1403
30. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051
31. Schutz F, Figueiredo-Braga M, Barata P, Cruz-Martins N. Obesity and gut microbiome: review of potential role of probiotics. Porto Biomed J. 2021;6:e111. https://doi.org/10.1097/j.pbj.0000000000000111
32. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–2370. https://doi.org/10.1073/pnas.0812600106
33. Cheng Z, Zhang L, Yang L, Chu H. The critical role of gut microbiota in obesity. Front Endocrinol (Lausanne). 2022;13:1025706. https://doi.org/10.3389/fendo.2022.1025706
34. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. https://doi.org/10.1038/nature05414
35. Rasmussen TS, Mentzel CMJ, Kot W, Castro-Mejía JL, Zuffa S, Swann JR, et al. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut. 2020;69(12):2122–2130. https://doi.org/10.1136/gutjnl-2019-320005
36. Yadav H, Jain S, Nagpal R, Marotta F. Increased fecal viral content associated with obesity in mice. World J Diabetes. 2016;7(15):316–320. https://doi.org/10.4239/wjd.v7.i15.316
37. Borgo F, Verduci E, Riva A, Lassandro C, Riva E, Morace G, et al. Relative abundance in bacterial and fungal gut microbes in obese children: a case control study. Child Obes. 2017;13(1):78–84. https://doi.org/10.1089/chi.2015.0194
38. Palmas V, Pisanu S, Madau V, Casula E, Deledda A, Cusano R, et al. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci Rep. 2021;11:5532. https://doi.org/10.1038/s41598-021-84928-w
39. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17:120. https://doi.org/10.1186/s12866-017-1027-1
40. Jin J, Cheng R, Ren Y, Shen X, Wang J, Xue Y, et al. Distinctive gut microbiota in patients with overweight and obesity with dyslipidemia and its responses to long-term orlistat and ezetimibe intervention: a randomized controlled open-label trial. Front Pharmacol. 2021;12:732541. https://doi.org/10.3389/fphar.2021.732541
41. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32:1720–1724. https://doi.org/10.1038/ijo.2008.155
42. Duan M, Wang Y, Zhang Q, Zou R, Guo M, Zheng H. Characteristics of gut microbiota in people with obesity. PLoS One. 2021;16:e0255446. https://doi.org/10.1371/journal.pone.0255446
43. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18:190–195. https://doi.org/10.1038/oby.2009.167
44. Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe. 2019;26:272. https://doi.org/10.1016/j.chom.2019.06.013
45. Miranda VPN, Dos Santos Amorim PR, Bastos RR, De Faria ER, De Castro Moreira ME, Do Carmo Castro Franceschini S, et al. Abundance of gut microbiota, concentration of short-chain fatty acids, and inflammatory markers associated with elevated body fat, overweight, and obesity in female adolescents. Mediators Inflamm. 2019;2019:7346863. https://doi.org/10.1155/2019/7346863
46. Woting A, Pfeiffer N, Loh G, Klaus S, Blaut M. Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models. mBio. 2014;5(5):e01530-14. https://doi.org/10.1128/mBio.01530-14
47. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–259. https://doi.org/10.1194/jlr.R500013-JLR200
48. Broeders EPM, Nascimento EBM, Havekes B, Brans B, Roumans KHM, Tailleux A, et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 2015;22(3):418–426. https://doi.org/10.1016/j.cmet.2015.07.002
49. Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21(2):159–165. https://doi.org/10.1038/nm.3760
50. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–489. https://doi.org/10.1038/nature04330
51. Rahat-Rozenbloom S, Fernandes J, Gloor GB, et al. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes (Lond). 2014;38:1525–1531. https://doi.org/10.1038/ijo.2014.46
52. Alsharairi NA. The role of short-chain fatty acids in mediating very low-calorie ketogenic diet–infant gut microbiota relationships and its therapeutic potential in obesity. Nutrients. 2021;13:3702. https://doi.org/10.3390/nu13113702
53. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185. https://doi.org/10.3389/fmicb.2016.00185
54. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41. https://doi.org/10.1111/1462-2920.13589
55. Bridgman SL, Azad MB, Field CJ, Haqq AM, Becker AB, Mandhane PJ, et al. Fecal short-chain fatty acid variations by breastfeeding status in infants at 4 months: differences in relative versus absolute concentrations. Front Nutr. 2017;4:11. https://doi.org/10.3389/fnut.2017.00011
56. van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev. 2017;75:286–305. https://doi.org/10.1093/nutrit/nuw067
57. Gabriel FC, Fantuzzi G. The association of short-chain fatty acids and leptin metabolism: a systematic review. Nutr Res. 2019;72:18–35. https://doi.org/10.1016/j.nutres.2019.08.006
58. Yao H, Fan C, Fan X, Lu Y, Wang Y, Wang R, et al. Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice. Br J Nutr. 2020;124:396–406. https://doi.org/10.1017/S0007114520001117
59. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–591. https://doi.org/10.1038/nrendo.2015.128
60. Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology. 2005;146:5092–5099. https://doi.org/10.1210/en.2005-0545
61. Yun Y, Kim HN, Kim SE, Heo SG, Chang Y, Ryu S, et al. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017;17(1):151. https://doi.org/10.1186/s12866-017-1052-0
62. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. https://doi.org/10.2337/db06-1491
63. Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by Tlr4 signal transduction pathway activation of fak and Myd88. J Immunol. 2015;195(10):4999–5010. https://doi.org/10.4049/jimmunol.1402598
64. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, et al. Enterocyte Tlr4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol. 2006;176(5):3070–3079. https://doi.org/10.4049/jimmunol.176.5.3070
65. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328(5975):228–231. https://doi.org/10.1126/science.1179721
66. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–2977. https://doi.org/10.1007/s00018-017-2509-x
67. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308–325. https://doi.org/10.1080/19490976.2018.1465157
68. Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol. 2024;22(11):671–686. https://doi.org/10.1038/s41579-024-01068-4
69. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. https://doi.org/10.1038/nature12820
70. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110
71. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–436. https://doi.org/10.1136/gutjnl-2014-308778
72. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339–1353.e21. https://doi.org/10.1016/j.cell.2016.10.043
73. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
74. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012;487(7405):104–108. https://doi.org/10.1038/nature11225
75. Cena H, Calder PC. Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients. 2020;12(2):334. https://doi.org/10.3390/nu12020334
76. Ratajczak AE, Festa S, Aratari A, Papi C, Dobrowolska A, Krela-Kaźmierczak I. Should the Mediterranean diet be recommended for inflammatory bowel diseases patients? A narrative review. Front Nutr. 2023;9:1088693. https://doi.org/10.3389/fnut.2022.1088693
77. Boughanem H, et al. Linking serum vitamin D levels with gut microbiota after 1-year lifestyle intervention with Mediterranean diet in patients with obesity and metabolic syndrome: a nested cross-sectional and prospective study. Gut Microbes. 2023;15(2):2249150. https://doi.org/10.1080/19490976.2023.2249150
78. Merra G, Noce A, Marrone G, Cintoni M, Tarsitano MG, Capacci A, et al. Influence of Mediterranean diet on human gut microbiota. Nutrients. 2021;13(1):7. https://doi.org/10.3390/nu13010007
79. Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, et al. A Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020;69(7):1258–1268. https://doi.org/10.1136/gutjnl-2019-320438
80. Tindall AM, Petersen KS, Kris-Etherton PM. Replacing saturated fats with unsaturated fats from walnuts or vegetable oils lowers atherogenic lipoprotein classes without increasing lipoprotein(a) or markers of inflammation. J Nutr. 2020;150(4):818–825. https://doi.org/10.1093/jn/nxz289
81. Koeth RA, et al. L-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest. 2019;129(1):373–387. https://doi.org/10.1172/JCI94601
82. Djekic D, Shi L, Brolin H, Carlsson F, Särnqvist C, Savolainen O, et al. Effects of a vegetarian diet on cardiometabolic risk factors, gut microbiota, and plasma metabolome in subjects with ischemic heart disease: a randomized, crossover study. J Am Heart Assoc. 2020;9(18):e016518. https://doi.org/10.1161/JAHA.120.016518
83. Nutrients. 2020;12(11):3471. https://doi.org/10.3390/nu12113471
84. Liu MJ, et al. Recent findings in Akkermansia muciniphila-regulated metabolism and its role in intestinal diseases. Clin Nutr. 2022. https://doi.org/10.1016/j.clnu.2022.08.029
85. García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, et al. Nutritional components in Western diet versus Mediterranean diet at the gut microbiota–immune system interplay: implications for health and disease. Nutrients. 2021;13(2):699. https://doi.org/10.3390/nu13020699
86. Randeni N, Bordiga M, Xu B. A comprehensive review of the triangular relationship among diet–gut microbiota–inflammation. Int J Mol Sci. 2024;25(17):9366. https://doi.org/10.3390/ijms25179366
87. Narula N, Wong ECL, Dehghan M, et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ. 2021;374:n1554. https://doi.org/10.1136/bmj.n1554
88. Basciani S, Camajani E, Contini S, Persichetti A, Risi R, Bertoldi L, et al. Very-low-calorie ketogenic diets with whey, vegetable, or animal protein in patients with obesity: a randomized pilot study. J Clin Endocrinol Metab. 2020;105(9):2939–2949. https://doi.org/10.1210/clinem/dgaa336
89. Zambrano AK, Cadena-Ullauri S, Guevara-Ramírez P, Frias-Toral E, Ruiz-Pozo VA, Paz-Cruz E, et al. The impact of a very-low-calorie ketogenic diet in the gut microbiota composition in obesity. Nutrients. 2023;15(12):2728. https://doi.org/10.3390/nu15122728
90. Wang R, Lin Z, He M, Liao Y, Xu Y, Chen C, et al. The role of gut microbiota in Tirzepatide-mediated alleviation of high-fat diet-induced obesity. Eur J Pharmacol. 2025 Sep 5;1002:177827. Epub 2025 Jun 12. https://doi.org/10.1016/j.ejphar.2025.177827
91. Kato S, Sato T, Fujita H, Kawatani M, Yamada Y. Effects of GLP-1 receptor agonist on changes in the gut bacterium and the underlying mechanisms. Sci Rep. 2021 Apr 28;11(1):9167. https://doi.org/10.1038/s41598-021-88612-x
92. Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel noninvasive approaches to the treatment of obesity: from pharmacotherapy to gene therapy. Endocr Rev. 2022;43(3):507–557. https://doi.org/10.1210/endrev/bnab034
93. Uehira Y, Ueno H, Miyamoto J, Kimura I, Ishizawa Y, Iijima H, et al. Impact of the lipase inhibitor orlistat on the human gut microbiota. Obes Res Clin Pract. 2023;17(5):411–420. https://doi.org/10.1016/j.orcp.2023.08.005
94. Jin J, Wang J, Cheng R, Ren Y, Miao Z, Luo Y, et al. Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota. Front Microbiol. 2022;13:908327. https://doi.org/10.3389/fmicb.2022.908327
95. Jin J, Cheng R, Ren Y, Shen X, Wang J, Xue Y, et al. Distinctive gut microbiota in patients with overweight and obesity with dyslipidemia and its responses to long-term orlistat and ezetimibe intervention: a randomized controlled open-label trial. Front Pharmacol. 2021;12:732541. https://doi.org/10.3389/fphar.2021.732541
96. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–1412. https://doi.org/10.1093/jn/125.6.1401S
97. Cherbut C. Inulin and oligofructose in the dietary fibre concept. Br J Nutr. 2002;87(Suppl 2):S159–S162. https://doi.org/10.1079/BJNBJN2002532
98. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, et al. Inulin: properties, health benefits and food applications. Carbohydr Polym. 2016;147:444–454. https://doi.org/10.1016/j.carbpol.2016.04.020
99. Visuthranukul C, Tirawatanapong S, Onlamoon N, Isaranuwatchai S, Kullavanijaya P, Chotigeat U, et al. Enhancing gut microbiota and microbial function with inulin supplementation in children with obesity. Pediatr Res. 2025. https://doi.org/10.1038/s41366-024-01590-8
100. Liu W, Li X, Zhao Z, Pi X, Meng Y, Fei D, et al. Effect of chitooligosaccharides on human gut microbiota and antiglycation. Carbohydr Polym. 2020;242:116413. https://doi.org/10.1016/j.carbpol.2020.116413
101. Olano A, Corzo N. Lactulose as food ingredient. J Sci Food Agric. 2009;89(12):1987–1990. https://doi.org/10.1002/jsfa.3694
102. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66
103. Vallianou NG, Kounatidis D, Tsilingiris D, Panagopoulos F, Christodoulatos GS, Evangelopoulos A, et al. The role of next-generation probiotics in obesity and obesity-associated disorders: current knowledge and future perspectives. Int J Mol Sci. 2023;24(7):6755. https://doi.org/10.3390/ijms24076755
104. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54(Pt 5):1469–1476. https://doi.org/10.1099/ijs.0.02873-0
105. Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. The ISAPP consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18(9):649–667. https://doi.org/10.1038/s41575-021-00440-6
106. Canfora EE, van der Beek CM, Jocken JWE, Goossens GH, Holst JJ, Olde Damink SWM, et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci Rep. 2017;7(1):2360. https://doi.org/10.1038/s41598-017-02546-x
107. Miyamoto J, Igarashi M, Watanabe K, Karaki SI, Mukouyama H, Kishino S, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10(1):4007. https://doi.org/10.1038/s41467-019-11978-0
108. Hawley JA, Forster SC, Giles EM. Exercise, the gut microbiome and gastrointestinal diseases: therapeutic impact and molecular mechanisms. Gastroenterology. 2025;169(1):48–62. https://doi.org/10.1053/j.gastro.2025.01.224
109. Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50(4):747–757. https://doi.org/10.1249/MSS.0000000000001495
110. Ghaffar T, Ubaldi F, Volpini V, Valeriani F, Romano Spica V. The role of gut microbiota in different types of physical activity and their intensity: systematic review and meta-analysis. Sports (Basel). 2024;12(8):221. https://doi.org/10.3390/sports12080221
111. Hintikka JE, Ahtiainen JP, Permi P, et al. Aerobic exercise training and gut microbiome-associated metabolic shifts in women with overweight: a multi-omic study. Sci Rep. 2023;13(1):11228. https://doi.org/10.1038/s41598-023-38357-6
112. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–715. https://doi.org/10.1016/j.chom.2018.05.012
113. Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev. 2019;47(2):75–85. https://doi.org/10.1249/JES.0000000000000183
114. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–616. https://doi.org/10.1038/s41575-019-0173-3
115. Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–1094. https://doi.org/10.1016/j.cell.2015.11.001
116. Johnson AJ, Shmagel AK, Abernathy BE, et al. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe. 2019;25(6):789–802.e5. https://doi.org/10.1016/j.chom.2019.05.005
117. Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25(5):716–729. https://doi.org/10.1038/s41591-019-0439-x
118. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096–1103. https://doi.org/10.1038/s41591-019-0495-2
119. O’Toole PW, Marchesi JR, Hill C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017;2:17057. https://doi.org/10.1038/nmicrobiol.2017.57
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Katarzyna Łysynkiewicz, Izabela Grzyb, Jan Szewczyk, Zuzanna Wątek

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 1
Number of citations: 0