Postmenopausal Osteoporosis: From Mechanisms to Modern Therapies
DOI:
https://doi.org/10.12775/QS.2026.50.67631Keywords
postmenopausal osteoporosis, postmenopausal osteoporosis treatment, osteoporosis hormonesAbstract
Background. Osteoporosis is the most common metabolic bone disease and represents a serious public health problem, particularly among postmenopausal women. It is characterized by reduced bone mineral density and bone microarchitecture disorders, leading to an increased risk of fractures, mortality, and socioeconomic burden. Estrogens play a key role in skeletal homeostasis by regulating osteoclasts, osteoblasts, and osteocytes. Advances in research have led to the development of effective pharmacological therapies targeting bone resorption and formation. In combination with supportive measures, these therapies form the basis of individualized strategies for fracture prevention and bone health maintenance in postmenopausal women.
Aim. The aim of this study is to review the role of estrogen deficiency in the pathogenesis of postmenopausal osteoporosis and to evaluate current pharmacologic treatment options, with a particular focus on their mechanisms of action, effects on bone remodeling, and efficacy in reducing fracture risk.
Material and methods. We conducted a review of the literature from 2015-2025 available in the PubMed database, using the keywords “postmenopausal osteoporosis” “postmenopausal osteoporosis treatment” and “osteoporosis hormones”
Results. A range of effective pharmacologic therapies is available to reduce fracture risk. Antiresorptive agents such as bisphosphonates and denosumab are central to treatment, while hormone replacement therapy and selective estrogen receptor modulators may benefit selected patients. Osteoanabolic agents are particularly valuable for individuals at high fracture risk. Calcium and vitamin D provide supportive benefits when deficiency is present.
Conclusions. Personalized, long-term therapeutic strategies such using osteoanabolic agents and antiresorptive agents as are critical to preserving bone health and optimizing treatment results in postmenopausal women.
References
1. Brown JP. Long-Term Treatment of Postmenopausal Osteoporosis. Endocrinol Metab (Seoul). 2021;36(3):544-552. doi:10.3803/EnM.2021.301
2. Bandeira L, Silva BC, Bilezikian JP. Male osteoporosis. Arch Endocrinol Metab. 2022;66(5):739-747. doi:10.20945/2359-3997000000563
3. Bonaccorsi G, Rizzati M, Salani L, Giganti M. Postmenopausal osteoporosis: risk evaluation and treatment options. Minerva Obstet Gynecol. 2021;73(6):714-729. doi:10.23736/S2724-606X.21.04896-X
4. Amin U, McPartland A, O'Sullivan M, Silke C. An overview of the management of osteoporosis in the aging female population. Womens Health (Lond). 2023;19:17455057231176655. doi:10.1177/17455057231176655
5. Walker MD, Shane E. Postmenopausal Osteoporosis. N Engl J Med. 2023;389(21):1979-1991. doi:10.1056/NEJMcp2307353
6. Management of osteoporosis in postmenopausal women: the 2021 position statement of The North American Menopause Society. Menopause. 2021;28(9):973-997. doi:10.1097/GME.0000000000001831
7. Lu L, Tian L. Postmenopausal osteoporosis coexisting with sarcopenia: the role and mechanisms of estrogen. J Endocrinol. 2023;259(1):e230116. Published 2023 Sep 11. doi:10.1530/JOE-23-0116
8. Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10(1):48. Published 2022 Jul 18. doi:10.1038/s41413-022-00219-8
9. Kenny AM, Raisz LG. Mechanisms of bone remodeling: implications for clinical practice. J Reprod Med. 2002;47(1 Suppl):63-70.
10. Karlamangla AS, Shieh A, Greendale GA. Hormones and bone loss across the menopause transition. Vitam Horm. 2021;115:401-417. doi:10.1016/bs.vh.2020.12.016
11. Li L, Wang Z. Ovarian Aging and Osteoporosis. Adv Exp Med Biol. 2018;1086:199-215. doi:10.1007/978-981-13-1117-8_13
12. Cauley JA. Estrogen and bone health in men and women. Steroids. 2015;99(Pt A):11-15. doi:10.1016/j.steroids.2014.12.010
13. Deepak V, Kayastha P, McNamara LM. Estrogen deficiency attenuates fluid flow-induced [Ca2+]i oscillations and mechanoresponsiveness of MLO-Y4 osteocytes. FASEB J. 2017;31(7):3027-3039. doi:10.1096/fj.201601280R
14. Jackson E, Lara-Castillo N, Akhter MP, et al. Osteocyte Wnt/β-catenin pathway activation upon mechanical loading is altered in ovariectomized mice. Bone Rep. 2021;15:101129. Published 2021 Sep 14. doi:10.1016/j.bonr.2021.101129
15. Khan AA, Morrison A, Hanley DA, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015;30(1):3-23. doi:10.1002/jbmr.2405
16. Watts NB, Grbic JT, Binkley N, et al. Invasive Oral Procedures and Events in Postmenopausal Women With Osteoporosis Treated With Denosumab for Up to 10 Years. J Clin Endocrinol Metab. 2019;104(6):2443-2452. doi:10.1210/jc.2018-01965
17. Miller PD, Pannacciulli N, Brown JP, et al. Denosumab or Zoledronic Acid in Postmenopausal Women With Osteoporosis Previously Treated With Oral Bisphosphonates. J Clin Endocrinol Metab. 2016;101(8):3163-3170. doi:10.1210/jc.2016-1801
18. Byun JH, Jang S, Lee S, et al. The Efficacy of Bisphosphonates for Prevention of Osteoporotic Fracture: An Update Meta-analysis. J Bone Metab. 2017;24(1):37-49. doi:10.11005/jbm.2017.24.1.37
19. Bone HG, Wagman RB, Brandi ML, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513-523. doi:10.1016/S2213-8587(17)30138-9
20. Kendler DL, Cosman F, Stad RK, Ferrari S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv Ther. 2022;39(1):58-74. doi:10.1007/s12325-021-01936-y
21. Ramchand SK, Leder BZ. Sequential Therapy for the Long-Term Treatment of Postmenopausal Osteoporosis. J Clin Endocrinol Metab. 2024;109(2):303-311. doi:10.1210/clinem/dgad496
22. Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96(4):972-980. doi:10.1210/jc.2010-1502
23. Sølling AS, Tsourdi E, Harsløf T, Langdahl BL. Denosumab Discontinuation. Curr Osteoporos Rep. 2023;21(1):95-103. doi:10.1007/s11914-022-00771-6
24. Cauley JA, Robbins J, Chen Z, et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women's Health Initiative randomized trial. JAMA. 2003;290(13):1729-1738. doi:10.1001/jama.290.13.1729
25. Martinkovich S, Shah D, Planey SL, Arnott JA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging. 2014;9:1437-1452. Published 2014 Aug 28. doi:10.2147/CIA.S66690
26. US Preventive Services Task Force, Owens DK, Davidson KW, et al. Medication Use to Reduce Risk of Breast Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2019;322(9):857-867. doi:10.1001/jama.2019.11885
27. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282(7):637-645. doi:10.1001/jama.282.7.637
28. Ke HZ, Qi H, Crawford DT, Chidsey-Frink KL, Simmons HA, Thompson DD. Lasofoxifene (CP-336,156), a selective estrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology. 2000;141(4):1338-1344. doi:10.1210/endo.141.4.7408
29. Bi B, Jiang Y, Shi Y, Ruan F. Bazedoxifene plus conjugated estrogens improve menopausal symptoms in postmenopausal women: a systematic review and meta-analysis. Gynecol Endocrinol. 2022;38(10):813-821. doi:10.1080/09513590.2022.2117294
30. Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest. 2011;34(10):801-810. doi:10.3275/7925
31. McClung MR, San Martin J, Miller PD, et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch Intern Med. 2005;165(15):1762-1768. doi:10.1001/archinte.165.15.1762
32. Xu F, Wang Y, Zhu X. The Safety and Efficacy of Abaloparatide on Postmenopausal Osteoporosis: A Systematic Review and Meta-analysis. Clin Ther. 2024;46(3):267-274. doi:10.1016/j.clinthera.2023.12.010
33. Reginster JY, Hattersley G, Williams GC, Hu MY, Fitzpatrick LA, Lewiecki EM. Abaloparatide is an Effective Treatment Option for Postmenopausal Osteoporosis: Review of the Number Needed to Treat Compared with Teriparatide. Calcif Tissue Int. 2018;103(5):540-545. doi:10.1007/s00223-018-0450-0
34. Jiang C, Zhu S, Zhan W, Lou L, Li A, Cai J. Comparative analysis of bone turnover markers in bone marrow and peripheral blood: implications for osteoporosis. J Orthop Surg Res. 2024;19(1):163. Published 2024 Mar 1. doi:10.1186/s13018-024-04634-x
35. Catalano A, Bellone F, Santoro D, et al. Vitamin D Boosts Alendronate Tail Effect on Bone Mineral Density in Postmenopausal Women with Osteoporosis. Nutrients. 2021;13(6):1878. Published 2021 May 31. doi:10.3390/nu13061878
36. Bolland MJ, Grey A, Reid IR. Should we prescribe calcium or vitamin D supplements to treat or prevent osteoporosis?. Climacteric. 2015;18 Suppl 2:22-31. doi:10.3109/13697137.2015.1098266
37. Farrah Z, Jawad AS. Optimising the management of osteoporosis. Clin Med (Lond). 2020;20(5):e196-e201. doi:10.7861/clinmed.2020-0131
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jakub Lambach, Kacper Kutnik, Weronika Woźnica, Julia Matuszewska, Michał Białogłowski, Alicja Maziarczyk, Anna Gęborys, Katarzyna Mazurek, Maja Wojcieszak, Dominika Miazga

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 20
Number of citations: 0