The Impact of Septoplasty on Physical Performance and Quality of Life in Active Individuals – A Literature Review
DOI:
https://doi.org/10.12775/QS.2026.49.67490Keywords
nasal septum deviation, septoplasty, physical performance, nitric oxide, sports medicineAbstract
Background. Appropriate upper airway patency is an essential component of exercise physiology. The nose is not only responsible for conditioning inhaled air but is also the primary source of nitric oxide (NO), which aids gas exchange in the lungs. Nasal septal deviation (NSD) disrupts flow aerodynamics, increases airway resistance, and forces a premature transition to the less efficient oral airway, depriving the physically active individual of metabolic benefits and limiting exercise potential.
Aim. The purpose of this study is to summarize the existing literature on the effect of nasal septal deviation on performance parameters and to determine how effective surgical correction (septoplasty) is in relation to performance, hemodynamic, and recovery parameters among physically active individuals.
Results. The literature review reveals that septoplasty offers several physiological advantages. During exercise, the process increases the economy of effort and delayed fatigue, as it decreases metabolic cost by increasing time to exhaustion without necessarily increasing absolute VO2max. In the hemodynamic area, nasal patency significantly unburdens the heart by lowering pulmonary artery pressure (mPAP) and improving left ventricular function. In addition, the procedure normalizes sleep quality and heart rate variability (HRV) parameters, which is the basis of a successful recovery after exercise.
Conclusions. Septoplasty is an effective treatment that promotes exercise capacity in athletes. This process has a profound influence on minimizing the metabolic cost of breathing, improving cardiovascular function and the quality of biological recovery, eliminating the physiological and functional gap between patients with NSD and the healthy population.
References
1. Eccles, R. (2000). Nasal Airflow in Health and Disease. Acta Oto-Laryngologica, 120(5), 580–595. https://doi.org/10.1080/000164800750000388
2. Bonini, S., Bonini, M., Bousquet, J., et al. Rhinitis and asthma in athletes: an ARIA document in collaboration with GA2LEN. Allergy, 2006;61(6):681-692. https://doi.org/10.1111/j.1398-9995.2006.01080.x
3. Silvers, W. S., & Poole, J. A. (2006). Exercise-induced rhinitis: a common disorder that adversely affects allergic and nonallergic athletes. Annals of Allergy, Asthma & Immunology, 96(2), 334–340. https://doi.org/10.1016/S1081-1206(10)61244-6
4. Goldin, J. G., & Bruner, P. J. (2024). Exercise-Induced Bronchoconstriction. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK557554/
5. Lévénez, M., Lévêque, C., Lafère, C., Guerrero, F., Balestra, C., & Lafère, P. Effect of Oral Versus Nasal Breathing on Muscular Performance, Muscle Oxygenation, and Post-Exercise Recovery. Sports, 2025; 13(10):368. https://doi.org/10.3390/sports13100368
6. Lundberg, J. O. (2008). Nitric oxide and the paranasal sinuses. The Anatomical Record, 291(11):1479-1484. https://doi.org/10.1002/ar.20782
7. Lundberg, J. O., Settergren, G., Gelinder, S., Lundberg, J. M., Alving, K., & Weitzberg, E. (1996). Inhalation of nasally derived nitric oxide modulates pulmonary function in humans. Acta physiologica Scandinavica, 158(4), 343–347. https://doi.org/10.1046/j.1365-201X.1996.557321000.x
8. Li, C., Jiang, J., Kim, K., Otto, B. A., Farag, A. A., Cowart, B. J., Pribitkin, E. A., Dalton, P., & Zhao, K. (2018). Nasal Structural and Aerodynamic Features That May Benefit Normal Olfactory Sensitivity. Chemical Senses, 43(4), 229–237. https://doi.org/10.1093/chemse/bjy013
9. Niinimaa, V., Cole, P., Mintz, S., & Shephard, R. J. (1981). Oronasal distribution of respiratory airflow. Respiration Physiology, 43(1), 69–75. https://doi.org/10.1016/0034-5687(81)90089-x
10. Akinoğlu, B., Mutlu, M., & Kocahan, T. Effect of septoplasty on functional outcomes and physical fitness level. Medical Journal of Islamic World Academy of Sciences, 2017;25(3):67-71. doi:10.5505/ias.2017.86658
11. da Silva de Oliveira, E., Ferraz Gomes, J. V., Antoniazzi, E. C., Toccafondo, R. M., & Paz de Araújo, M. The impacts of septoplasty on sleep quality: A literature review. Lumen et Virtus, 2024. https://doi.org/10.56238/levv15n43-076
12. Howarth, N. E., White, A. J., Pearce, A. J., Nowinski, C., Cantu, R., Ji, C., & Miller, M. A. Obstructive Sleep Apnea (OSA) and contact sports: A systematic review and meta-analysis. Sleep Epidemiology, 2022. https://doi.org/10.1016/j.sleepe.2022.100036
13. Dallam, G. M., McClaran, S. R., & Cox, D. G. Effect of Nasal Versus Oral Breathing on VO2max and Physiological Economy in Recreational Runners Following an Extended Period of Adaptation. International Journal of Kinesiology and Sports Science, 2018;6(2):22-29. https://doi.org/10.7575/aiac.ijkss.v.6n.2p.22
14. Morton, A. R., King, K., Papalia, S., Goodman, C., Turley, K. R., & Wilmore, J. H. Comparison of maximal oxygen consumption with oral and nasal breathing. Australian Journal of Science and Medicine in Sport, 1995;27(3):51-55.
15. Avatef Fazeli, M., et al. The Effects of Nasal Septoplasty on the Severity of Obstructive Sleep Apnea Syndrome. Hospital Practices and Research, 2022. doi:10.34172/hpr.2022.21
16. Fettman, N., Sanford, T., & Sindwani, R. (2009). Surgical management of the deviated septum: techniques in septoplasty. Otolaryngologic Clinics of North America, 42(2), 241–viii. https://doi.org/10.1016/j.otc.2009.01.005
17. Alessandri-Bonetti, M., Costantino, A., Cottone, G., Carbonaro, R., Cardone, F., Amendola, F., De Virgilio, A., Robotti, E., Persichetti, P., & Vaienti, L. (2023). Efficacy of Septoplasty in Patients with Nasal Obstruction: A Systematic Review and Meta-analysis. The Laryngoscope, 133(12), 3237–3246. https://doi.org/10.1002/lary.30684
18. Kaya, H., Kurt, E., Koparal, M., Tibilli, H., Hosoglu, Y., Kafadar, S., ... & Türkmen, S. (2022). Effect of septoplasty on left ventricular myocardial performance in patients with nasal septum deviation. Brazilian Journal of Otorhinolaryngology, 88(4), 589–593. https://doi.org/10.1016/j.bjorl.2020.08.004
19. Celiker, M., Cicek, Y., Tezi, S., Ozgur, A., Polat, H. B., & Dursun, E. (2018). Effect of Septoplasty on the Heart Rate Variability in Patients With Nasal Septum Deviation. The Journal of Craniofacial Surgery, 29(2), 445–448. https://doi.org/10.1097/SCS.0000000000004149
20. Fidan, V., & Aksakal, E. Impact of Septoplasty on Pulmonary Artery Pressure in Patients With Markedly Deviated Septum. The Journal of Craniofacial Surgery, 2011;22(5):1591-3. doi:10.1097/SCS.0b013e31822e5e21
21. Bugten, V., Nilsen, A. H., Thorstensen, W. M., et al. Quality of life and symptoms before and after nasal septoplasty compared with healthy individuals. BMC Ear, Nose and Throat Disorders, 16, 13 (2016). https://doi.org/10.1186/s12901-016-0031-7
22. Subramaniam, V., Yoonus, R., & Narra, M. Effects of septoplasty on the acoustic parameters of voice. Egyptian Journal of Ear, Nose, Throat and Allied Sciences, 2015. https://doi.org/10.1016/j.ejenta.2015.08.006
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Klaudia Brzoza, Filip Matusiak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 38
Number of citations: 0