Plant-Based Diet - Modulation of the Gut Microbiome and Metabolic Consequences
DOI:
https://doi.org/10.12775/QS.2026.49.67454Keywords
plant-based diet, gut microbiome, short-chain fatty acids, microbiota-acessible carbohydrates, metabolic health, polyphenols, intestinal barrier functionAbstract
Plant-based diets have gained prominence due to their environmental benefits and protective effects against metabolic disorders, including obesity, type 2 diabetes, and cardiovascular disease. The gut microbiome acts as a key metabolic organ mediating the interaction between diet and host physiology, primarily through microbiota-accessible carbohydrates (MACs) and polyphenols found abundantly in plant foods. A comprehensive literature review demonstrates that plant-based diets promote favourable shifts in microbiota composition, increasing beneficial bacteria populations such as Lachnospiraceae, Ruminococcaceae, and Bifidobacterium spp., while reducing pathobionts including Enterobacteriaceae and Bilophila wadsworthia. These compositional changes enhance production of short-chain fatty acids, particularly butyrate, which strengthen intestinal barrier function and activate signalling pathways regulating satiety hormones (GLP-1, PYY) and glucose homeostasis. Plant-derived tryptophan metabolites and urolithin A further support intestinal integrity through aryl hydrocarbon receptor and Nrf2 pathway activation. The resulting microbiome alterations correlate with improved postprandial glycemic response, reduced cholesterol levels, decreased inflammatory markers, and lower risk of non-alcoholic fatty liver disease. However, the protective effects depend critically on consuming whole foods rich in fiber and polyphenols rather than processed plant-based alternatives. Long-term randomized controlled trials and personalized approaches considering individual microbiome variation are necessary to fully elucidate these mechanisms and optimize dietary recommendations across diverse populations.
References
1. Ostfeld RJ. Definition of a plant-based diet and overview of this special issue. J Geriatr Cardiol. 2017;14(5):315. doi:10.11909/J.ISSN.1671-5411.2017.05.008
2. Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet. 2019;393(10170):447-492. doi:10.1016/S0140-6736(18)31788-4
3. Augimeri G, Caparello G, Caputo I, Reda R, Testarelli L, Bonofiglio D. Mediterranean diet: a potential player in the link between oral microbiome and oral diseases. J Oral Microbiol. 2024;16(1). doi:10.1080/20002297.2024.2329474;REQUESTEDJOURNAL:JOURNAL:ZJOM20;ISSUE:ISSUE:DOI
4. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688. doi:10.1038/SJ.EMBOR.7400731
5. Sonnenburg ED, Sonnenburg JL. Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 2014;20(5):779. doi:10.1016/J.CMET.2014.07.003
6. Cronin P, Joyce SA, O’toole PW, O’connor EM. Dietary Fibre Modulates the Gut Microbiota. Nutrients. 2021;13(5):1655. doi:10.3390/NU13051655
7. Feng Y, Jin Q, Liu X, Lin T, Johnson A, Huang H. Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions. Comprehensive Reviews in Food Science and Food Safety . 2025;24(1):e70092. doi:10.1111/1541-4337.70092;JOURNAL:JOURNAL:15414337;WGROUP:STRING:PUBLICATION
8. Moncada E, Bulut N, Li S, Hamaker B, Reddivari L. SELECTION OF DIETARY FIBERS FOR GUT HEALTH BASED ON THEIR PHYSICOCHEMICAL PROPERTIES. Inflamm Bowel Dis. 2023;29(Supplement_1):S48-S48. doi:10.1093/IBD/IZAC247.092
9. Cheng J, Sahin A, Hu C, Korczak R, Zhou J. Editorial: New advances in dietary fibers and their role in metabolic, digestive, and immune health. Front Nutr. 2024;11:1404346. doi:10.3389/FNUT.2024.1404346
10. Whitman JA, Doherty LA, Pantoja-Feliciano de Goodfellow IG, et al. In Vitro Fermentation Shows Polyphenol and Fiber Blends Have an Additive Beneficial Effect on Gut Microbiota States. Nutrients. 2024;16(8):1159. doi:10.3390/NU16081159/S1
11. Cai J, Chen Z, Wu W, Lin Q, Liang Y. High animal protein diet and gut microbiota in human health. Crit Rev Food Sci Nutr. 2022;62(22):6225-6237. doi:10.1080/10408398.2021.1898336;PAGE:STRING:ARTICLE/CHAPTER
12. Feng Y, Jin Q, Liu X, Lin T, Johnson A, Huang H. Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions. Compr Rev Food Sci Food Saf. 2025;24(1). doi:10.1111/1541-4337.70092
13. Ahrens AP, Culpepper T, Saldivar B, et al. A six-day, lifestyle-based immersion program mitigates cardiovascular risk factors and induces shifts in gut microbiota, specifically lachnospiraceae, ruminococcaceae, faecalibacterium prausnitzii: A pilot study. Nutrients. 2021;13(10):3459. doi:10.3390/NU13103459/S1
14. Toribio-Mateas MA, Bester A, Klimenko N. Impact of Plant-Based Meat Alternatives on the Gut Microbiota of Consumers: A Real-World Study. Foods. 2021;10(9). doi:10.3390/FOODS10092040
15. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505(7484):559. doi:10.1038/NATURE12820
16. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691-14696. doi:10.1073/PNAS.1005963107
17. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332-1345. doi:10.1016/J.CELL.2016.05.041
18. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nature Communications 2018 9:1. 2018;9(1):3294-. doi:10.1038/s41467-018-05470-4
19. Singh R, Chandrashekharappa S, Bodduluri SR, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nature Communications 2019 10:1. 2019;10(1):89-. doi:10.1038/s41467-018-07859-7
20. Klementova M, Thieme L, Haluzik M, et al. A Plant-Based Meal Increases Gastrointestinal Hormones and Satiety More Than an Energy- and Macronutrient-Matched Processed-Meat Meal in T2D, Obese, and Healthy Men: A Three-Group Randomized Crossover Study. Nutrients 2019, Vol 11, Page 157. 2019;11(1):157. doi:10.3390/NU11010157
21. Asnicar F, Berry SE, Valdes AM, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27(2):321. doi:10.1038/S41591-020-01183-8
22. Miao Z, Du W, Xiao C, et al. Gut microbiota signatures of long-term and short-term plant-based dietary pattern and cardiometabolic health: a prospective cohort study. BMC Med. 2022;20(1):204. doi:10.1186/S12916-022-02402-4
23. Miryan M, Azizi A, Pasdar Y, Moradi M. Adherence to plant based diets reduce the risk of hepatic fibrosis in nonalcoholic fatty liver disease. Scientific Reports 2025 15:1. 2025;15(1):17403-. doi:10.1038/s41598-025-02613-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Bartosz Wróbel, Lena Wójcik, Michał Filipski, Justyna Klonowska, Szymon Kosek

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 126
Number of citations: 0