Emerging Directions in CAR-T Cell Therapy: Solid Tumors
DOI:
https://doi.org/10.12775/QS.2025.49.67441Keywords
CAR-T cells, immunotherapy, tumor microenvironment, breast cancer, lung cancer, solid tumorAbstract
Background. CAR-T therapy represents a breakthrough in immuno-oncology, enabling tumor elimination independently of the MHC system. This strategy has achieved spectacular clinical success in hematology (ALL, DLBCL), primarily by targeting CD19 and BCMA antigens. However, adapting this technology to solid tumors, which account for approximately 90% of cancer cases, remains a challenge. Given the rising incidence in an aging population, overcoming the barriers limiting CAR-T efficacy in this group has become a critical research priority.
Aim. The aim of the study was to summarize the current state of knowledge, challenges and emerging strategies for the use of CAR-T therapy in the treatment of solid tumors, based on the latest literature reports.
Materials and methods. A literature review was conducted using PubMed, Google Scholar, and Web of Science databases, focusing primarily on articles published between 2023 and 2025, alongside relevant historical context. The search utilized the following keywords: CAR-T cells, immunotherapy, tumor microenvironment, breast cancer, lung cancer, and solid tumor. The analysis included only English-language publications.
Results. The analysis tracks CAR evolution from 1st to 5th generation, emphasizing costimulation and TRUCK systems. In solid tumors (e.g., TNBC, NSCLC), efficacy is hindered by the immunosuppressive microenvironment (TME), antigen heterogeneity, and physical barriers. Key strategies to overcome these include combination with checkpoint inhibitors, CRISPR/Cas9 editing, Dual-CAR systems, and cytokine induction.
Conclusions. CAR-T technology extends beyond hematology, showing promising potential in solid tumors, autoimmune diseases, and neurodegenerative disorders. New modification strategies overcome microenvironmental barriers in solid tumors, while CAR-T and CAR-Tregs effectively restore immune homeostasis in autoimmunity. This therapy is evolving into a versatile platform with broad translational significance.
References
1. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388-398. doi:10.1158/2159-8290.CD-12-0548
2. Bogacz A, Bukowska A, Bukowska M, et al. Modern immunotherapy using CAR-T cells in haemato-oncology and solid tumors. Acta Haematol Pol. 2024;55(1):34-41. doi:10.5603/ahp.97189
3. Radecka B, Czech J, Siedlaczek A, Maczkiewicz M, Jagiełło-Gruszfeld A, Duchnowska R. Chemotherapy compliance in elderly patients with solid tumors: a real-world clinical practice data. Oncol Clin Pract. 2023;19(4):217-223. doi:10.5603/OCP.2022.0009
4. Zugasti I, Espinosa-Aroca L, Fidyt K, et al. CAR-T cell therapy for cancer: current challenges and future directions. Sig Transduct Target Ther. 2025;10(1):210. doi:10.1038/s41392-025-02269-w
5. Saad F, So AI, Aprikian A, et al. 2025 Canadian Urological Association-Canadian Uro-oncology Group Guideline: Metastatic castration-resistant prostate cancer (Update). Can Urol Assoc J 2025;19(8):E276-89. http://dx.doi.org/10.5489/cuaj.9341
6. Kulasegaran T, Oliveira N. Metastatic Castration-Resistant Prostate Cancer: Advances in Treatment and Symptom Management. Curr Treat Options Oncol. 2024;25(7):914-931. doi:10.1007/s11864-024-01215-2
7. Kwon WA, Joung JY. Immunotherapy in Prostate Cancer: From a "Cold" Tumor to a "Hot" Prospect. Cancers (Basel). 2025;17(7):1064. doi:10.3390/cancers17071064
8. Calabrò ML, Ettari R, Di Chio C, De Luca F, Previti S, Zappalà M. CAR-T Cell Therapy for Prostate Cancer: Current Advances and Future Perspectives. Biomedicines. 2025;13(10):2545. doi:10.3390/biomedicines13102545
9. Błaszczak E, Miziak P, Odrzywolski A, Baran M, Gumbarewicz E, Stepulak A. Triple-Negative Breast Cancer Progression and Drug Resistance in the Context of Epithelial-Mesenchymal Transition. Cancers (Basel). 2025;17(2):228. doi:10.3390/cancers17020228
10. Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol. 2024;15:1385571. doi:10.3389/fimmu.2024.1385571
11. Rebaudi F, De Franco F, Goda R, et al. The landscape of combining immune checkpoint inhibitors with novel Therapies: Secret alliances against breast cancer. Cancer Treat Rev. 2024;130:102831. doi:10.1016/j.ctrv.2024.102831
12. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021: 71: 209-249. https://doi.org/10.3322/caac.21660
13. Zhou S, Yang H. Immunotherapy resistance in non-small-cell lung cancer: From mechanism to clinical strategies. Front Immunol. 2023;14:1129465. doi:10.3389/fimmu.2023.1129465
14. Trudu L, Rovesti G, Neri G, et al. CAR-T for Lung Cancers: Challenges and Innovations. Lung Cancer. 2025;207:108711. doi:10.1016/j.lungcan.2025.108711
15. Tan J, Zhu L, Shi J, et al. Evaluation of drug resistance for EGFR-TKIs in lung cancer via multicellular lung-on-a-chip. Eur J Pharm Sci. 2024;199:106805. doi:10.1016/j.ejps.2024.106805
16. Liu H, Ma Y, Yang C, et al. Severe delayed pulmonary toxicity following PD-L1-specific CAR-T cell therapy for non-small cell lung cancer. Clin Transl Immunology. 2020;9(10):e1154. doi:10.1002/cti2.1154
17. Li F, Zhao S, Wei C, et al. Development of Nectin4/FAP-targeted CAR-T cells secreting IL-7, CCL19, and IL-12 for malignant solid tumors. Front Immunol. 2022;13:958082. doi:10.3389/fimmu.2022.958082
18. Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 2023;20(1):49-62. doi:10.1038/s41571-022-00704-3
19. Ouladan S, Orouji E. Chimeric Antigen Receptor-T Cells in Colorectal Cancer: Pioneering New Avenues in Solid Tumor Immunotherapy. J Clin Oncol. 2025;43(8):994-1005. doi:10.1200/JCO-24-02081
20. Qi C, Liu C, Peng Z, et al. Claudin-18 isoform 2-specific CAR T-cell therapy (satri-cel) versus treatment of physician's choice for previously treated advanced gastric or gastro-oesophageal junction cancer (CT041-ST-01): a randomised, open-label, phase 2 trial. Lancet. 2025;405(10494):2049-2060. doi:10.1016/S0140-6736(25)00860-8
21. Bębnowska D, Grywalska E, Niedźwiedzka-Rystwej P, et al. CAR-T Cell Therapy-An Overview of Targets in Gastric Cancer. J Clin Med. 2020;9(6):1894. doi:10.3390/jcm9061894
22. Aboalela MA, Abdelmoneim M, Matsumura S, et al. Enhancing mesothelin CAR T cell therapy for pancreatic cancer with an oncolytic herpes virus boosting CAR target antigen expression. Cancer Immunol Immunother. 2025;74(7):202. doi:10.1007/s00262-025-04039-7
23. Guirguis DA, Hasan F, Morris N, et al. Tumor tough, therapy smarter: Rethinking CAR-T for pancreatic cancer. Semin Oncol. 2025;52(6):152411. doi:10.1016/j.seminoncol.2025.152411
24. Ozer M, Goksu SY, Akagunduz B, George A, Sahin I. Adoptive Cell Therapy in Hepatocellular Carcinoma: A Review of Clinical Trials. Cancers (Basel). 2023;15(6):1808. doi:10.3390/cancers15061808
25. Schmidts A, Srivastava AA, Ramapriyan R, et al. Tandem chimeric antigen receptor (CAR) T cells targeting EGFRvIII and IL-13Rα2 are effective against heterogeneous glioblastoma. Neurooncol Adv. 2022;5(1):vdac185. doi:10.1093/noajnl/vdac185
26. Agosti E, Garaba A, Antonietti S, et al. CAR-T Cells Therapy in Glioblastoma: A Systematic Review on Molecular Targets and Treatment Strategies. Int J Mol Sci. 2024;25(13):7174. Published 2024 Jun 29. doi:10.3390/ijms25137174
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Michał Magiera, Miłosz Sikora, Piotr Czwałga, Patrycja Koprowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 78
Number of citations: 0