Optical Coherence Tomography Angiography in iIchemic Retinal and Optic Nerve diseases, with Emerging Applications in Athletes
DOI:
https://doi.org/10.12775/QS.2025.48.67373Keywords
OCT-A, retinal ischemia, microvascular pathology, diabetic retinopathy, optic nerve ischemiaAbstract
Background. Optical coherence tomography angiography (OCT-A) provides non-invasive, high-resolution assessment of retinal and optic nerve microvasculature. Ischemic disorders such as DR, DMI, RVO, RAO and NAION show characteristic microvascular deficits measurable with OCT-A biomarkers. Early data also demonstrate exercise-related modulation of retinal perfusion.
Aim. To review diagnostic, prognostic and emerging exercise-related applications of OCT-A in ischemic ocular disease.
Methods. Systematic overview of 30 studies evaluating OCT-A biomarkers, perfusion deficits, structure–function relationships and exercise-induced microvascular responses.
Results. OCT-A reliably detects early ischemic changes—reduced vessel density, deep plexus dropout, parafoveal non-perfusion and FAZ enlargement—correlating with functional loss. It differentiates ischemic from non-ischemic RVO, maps RAO perfusion deficits and identifies radial peripapillary capillary loss in NAION. Subclinical abnormalities appear in systemic conditions. In active individuals and endurance athletes, OCT-A captures transient and training-related perfusion changes. Limitations include artifacts, segmentation errors and lack of leakage detection.
Conclusions. OCT-A is essential for detecting and monitoring ischemic retinal and optic nerve disease. Key biomarkers (VD, PD, FAZ, NPA) reflect severity and prognosis. Early evidence suggests additional utility in assessing physiological microvascular adaptation to exercise.
References
1. Mastropasqua R, Toto L, Di Antonio L, Borrelli E, Senatore A, Di Nicola M, Di Martino G, Ciancaglini M, Carpineto P.
Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions.
Scientific Reports 2017; 7: 40763. doi: 10.1038/srep40763
2. Hajdu D, Told R, Angeli O, Weigert G, Pollreisz A, Schmidt-Erfurth U, Sacu S.
Identification of microvascular and morphological alterations in eyes with central retinal non-perfusion.
PLOS ONE 2020; 15(11): e0241753. doi: 10.1371/journal.pone.0241753
3. Chua J, Sim R, Tan B, Wong D, Yao W, Liu X, S W Ting D, Schmidl D, Ang M, Garhöfer G, Schmetterer L.
Optical Coherence Tomography Angiography in Diabetes and Diabetic Retinopathy.
Journal of Clinical Medicine 2020; 9(6): 1723. doi: 10.3390/jcm9061723
4. Moir J, Khanna S, Skondra D.
Review of OCT Angiography Findings in Diabetic Retinopathy: Insights and Perspectives.
International Journal of Translational Medicine 2021; 1(3): 286–305. doi: 10.3390/ijtm1030017
5. Kaizu Y, Nakao S, Arima M, Hayami T, Wada I, Yamaguchi M, Sekiryu H, Ishikawa K, Ikeda Y, Sonoda K-H.
Flow Density in OCT Angiography Is Useful for Retinopathy Diagnosis in Diabetic Patients.
Scientific Reports 2019; 9: 8668. doi: 10.1038/s41598-019-45194-z
6. Tsai W-S, Thottarath S, Gurudas S, Sen P, Pearce E, Giani A, Chong V, Cheung CMG, Sivaprasad S.
Correlation of OCT-A Characteristics with Visual Function to Define Vision-Threatening Diabetic Macular Ischemia.
Diagnostics 2022; 12(5): 1050. doi: 10.3390/diagnostics12051050
7. Al-Sheikh M, Akil H, Pfau M, Sadda SR.
Swept-Source OCT-A Imaging of the Foveal Avascular Zone and Macular Capillary Network Density in Diabetic Retinopathy.
IOVS 2016; 57(8): 3907–3913. doi: 10.1167/iovs.16-19570
8. Sampson DM, Dubis AM, Chen FK, Zawadzki RJ, Sampson DD.
Towards standardizing retinal OCT-A: a review.
Light: Science & Applications 2022; 11: 134. doi: 10.1038/s41377-022-00740-9
9. Gaier ED, Wang M, Gilbert AL, Rizzo 3rd JF, Cestari DM, Miller JB.
Quantitative analysis of OCT-A in NAION corresponds to visual function.
PLOS ONE 2018; 13(6): e0199793. doi: 10.1371/journal.pone.0199793
10. Scarinci F, Varano M, Parravano M.
Retinal Sensitivity Loss Correlates with Deep Capillary Plexus Impairment in DMI.
Journal of Ophthalmology 2019; 2019: 7589841. doi: 10.1155/2019/7589841
11. Tsai ASH, Jordan-Yu JM, Gan ATL, Teo KYC, Tan GSW, Lee SY, Chong V, Cheung CMG.
DMI: Influence of OCT-A Parameters on Changes in Functional Outcomes Over One Year.
IOVS 2021; 62(1): 9. doi: 10.1167/iovs.62.1.9
12. Bradley PD, Sim DA, Keane PA, Cardoso J, Agrawal R, Adnan T, Egan CA.
The Evaluation of Diabetic Macular Ischemia Using OCT-A.
IOVS 2016; 57(2): 626–631. doi: 10.1167/iovs.15-18034
13. Garcia JMBdB, Lima TT, Louzada RN, Rassi AT, Isaac DLC, Avila M.
DMI Diagnosis: Comparison Between OCT-A and Fluorescein Angiography.
Journal of Ophthalmology 2016; 2016: 3989310. doi: 10.1155/2016/3989310
14. Hwang TS, Gao SS, Liu L, Lauer AK, Bailey ST, Flaxel CJ, Wilson DJ, Huang D, Jia Y.
Automated Quantification of Capillary Nonperfusion Using OCT-A in DR.
JAMA Ophthalmology 2016; 134(4): 367–373. doi: 10.1001/jamaophthalmol.2015.5658
15. Krawitz BD, Phillips E, Bavier RD, Mo S, Carroll J, Rosen RB, Chui TYP.
Parafoveal Nonperfusion Analysis in DR Using OCT-A.
Translational Vision Science & Technology 2018; 7(4): 4. doi: 10.1167/tvst.7.4.4
16. Boned-Murillo A, Albertos-Arranz H, Diaz-Barreda MD, Orduna-Hospital E, Sánchez-Cano A, Ferreras A, Cuenca N, Pinilla I.
OCT-A in Diabetic Patients: A Systematic Review.
Biomedicines 2022; 10(1): 88. doi: 10.3390/biomedicines10010088
17. Crincoli E, Sacconi R, Servillo A, Tombolini B, Querques G.
Role of OCT-A in the Evaluation of Peripheral Ischemia in RVO.
Saudi Journal of Ophthalmology 2024; 38(2): 138–143. doi: 10.4103/sjopt.sjopt_182_23
18. Chen L, Yuan M, Sun L, Wang Y, Chen Y.
Evaluation of Microvascular Network with OCT-A in BRVO.
BMC Ophthalmology 2020; 20: 154. doi: 10.1186/s12886-020-01405-0
19. Xiao Q, Sun C-B, Ma Z.
OCT-A of peripapillary vessel density in NAION and demyelinating optic neuritis.
Frontiers in Neurology 2024; 15: 1432753. doi: 10.3389/fneur.2024.1432753
20. Ling J-W, Yin X, Lu Q-Y, Chen Y-Y, Lu P-R.
OCT-A of optic disc perfusion in NAION.
International Journal of Ophthalmology 2017; 10(9): 1402–1406. doi: 10.18240/ijo.2017.09.12
21. Sönmez HK, Arda H, Gülmez Sevim D.
Evaluation of Optic Disc Perfusion with OCT-A in Acute NAION.
Turk J Ophthalmol 2022; 52: 30–36. doi: 10.4274/tjo.galenos.2021.48465
22. Bunod R, Lubrano M, Pirovano A, Chotard G, Brasnu E, Berlemont S, Labbé A, Augstburger E, Baudouin C.
A Deep Learning System Using OCT-A to Detect Glaucoma and AION.
Journal of Clinical Medicine 2023; 12(2): 507. doi: 10.3390/jcm12020507
23. Zhou M, Hashimoto K, Wei D, Cai Y, Huang L, Shi X, Zhao M.
Detection of Retinal Microvascular Changes with OCT-A in Acute Leukemia Without Retinopathy.
Ophthalmology and Therapy 2024. doi: 10.1007/s40123-024-00904-3
24. Igawa Y, Amaki H, Kanno J, Tachibana M, Konno S, Yoshikawa Y, Matsumoto S, Shoji T, Makita J, Shinoda K.
Evaluations of microvascular density by optical coherence tomography, angiography, and function by multifocal electroretinography of the macular area in eyes with branch retinal artery occlusion.
Frontiers in Ophthalmology 2023. doi: 10.3389/fopht.2023.1255098
25. Terashima H, Okamoto F, Hasebe H, Ueda E, Yoshida H, Fukuchi T.
OCT-A and Humphrey Field Analyser for macular capillary non-perfusion evaluation in BRVO.
Scientific Reports 2021; 11: 5334. doi: 10.1038/s41598-021-84240-7
26. Javed A, Khanna A, Palmer E, Wilde C, Zaman A, Orr G, Kumudhan D, Lakshmanan A, Panos GD.
Optical coherence tomography angiography: a review of the current literature.
Journal of International Medical Research 2023. doi: 10.1177/03000605231187933
27. Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N.
Short-term effects of exercise on optic nerve and macular perfusion measured by OCT-A.
Retina. 2017;37(9):1642–1646. doi:10.1097/IAE.0000000000001419
28. Vo Kim S, Semoun O, Pedinielli A, Jung C, Miere A, Souied EH.
Optical coherence tomography angiography quantitative assessment of exercise-induced variations in retinal vascular plexa of healthy subjects.
Invest Ophthalmol Vis Sci. 2019;60(5):1412–1419. doi:10.1167/iovs.18-24389
29. Nelis P, Schmitz B, Klose A, et al.
Correlation analysis of physical fitness and retinal microvasculature by OCT angiography in healthy adults.
PLoS One. 2019;14(12):e0225769. doi:10.1371/journal.pone.0225769
30. Mauget-Faÿsse M, Arej N, Paternoster M, et al.
Retinal and choroidal blood flow variations after an endurance exercise: A pilot study at the Paris Marathon.
J Sci Med Sport. 2021;24(11):1100–1104. doi:10.1016/j.jsams.2021.03.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michalina Czudowska, Emilia Borychowska, Magdalena Zawadzka, Dominika Marszałek, Klaudia Kurzątkowska, Aleksandra Natalia Bystros, Marta Drozdowska, Aleksandra Ocimek, Karolina Gwóźdź, Zofia Aneta Mierzejewska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 29
Number of citations: 0