Drug-Resistant Epilepsy in Pediatric Patients: Current Evidence on the Therapeutic Role of Ketogenic Diet
DOI:
https://doi.org/10.12775/QS.2025.48.67255Keywords
epilepsy, drug-resistant epilepsy, children, ketogenic diet, low glycemic index treatment, modified Atkins dietAbstract
Background: Epilepsy affects millions worldwide, and approximately one-third of patients develop drug-resistant epilepsy, particularly burdensome in pediatric populations, where comorbid developmental impairments are common and underlying mechanisms remain only partially defined. Emerging evidence indicates that non-pharmacological approaches - most notably modern, better-tolerated ketogenic dietary variants - can reduce seizure burden by including therapeutic ketosis and shifting cerebral energy toward ketone body utilization.
Materials and methods: An extensive literature review was conducted using sources retrieved from the PubMed and Google Scholar databases.
Aim: The aim of this study was to analyze and synthesize current knowledge and drug-resistant epilepsy in children, as well as to evaluate the role of non-pharmacological interventions, specifically the classical ketogenic diet and its alternative formulations (MAD, LGIT).
Conclusions: The classical ketogenic diet (cKD) is effective in children with drug-resistant epilepsy (DRE), but its strict regimen and poor palatability often limit adherence. Alternative approaches, such as the modified Atkins diet (MAD) and low glycemic index treatment (LGIT), are better tolerated and more flexible, though slightly less effective. Further research is needed to clarify underlying mechanisms and optimize dietary therapies for DRE.
References
[1] Chen, Z., Brodie, M. J., Liew, D., & Kwan, P. (2018). Treatment Outcomes in Patients With Newly Diagnosed Epilepsy Treated With Established and New Antiepileptic Drugs: A 30-Year Longitudinal Cohort Study. JAMA neurology, 75(3), 279–286. https://doi.org/10.1001/jamaneurol.2017.3949
[2] Nickels, K. C., Grossardt, B. R., & Wirrell, E. C. (2012). Epilepsy-related mortality is low in children: a 30-year population-based study in Olmsted County, MN. Epilepsia, 53(12), 2164–2171. https://doi.org/10.1111/j.1528-1167.2012.03661.x
[3] Ong, M. S., Kohane, I. S., Cai, T., Gorman, M. P., & Mandl, K. D. (2014). Population-level evidence for an autoimmune etiology of epilepsy. JAMA neurology, 71(5), 569–574. https://doi.org/10.1001/jamaneurol.2014.188
[4] Fisher, R. S., van Emde Boas, W., Blume, W., Elger, C., Genton, P., Lee, P., & Engel, J., Jr (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472. https://doi.org/10.1111/j.0013-9580.2005.66104.x
[5] Kwan, P., Schachter, S. C., & Brodie, M. J. (2011). Drug-resistant epilepsy. The New England journal of medicine, 365(10), 919–926. https://doi.org/10.1056/NEJMra1004418
[6] Auvin, S., Galanopoulou, A. S., Moshé, S. L., Potschka, H., Rocha, L., Walker, M. C., & TASK1 workgroup on drug-resistant epilepsy of the ILAE/AES Joint Translational Task Force (2023). Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia, 64(11), 2891–2908. https://doi.org/10.1111/epi.17751
[7] Guery, D., & Rheims, S. (2021). Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies. Neuropsychiatric disease and treatment, 17, 2229–2242. https://doi.org/10.2147/NDT.S256699
[8] Janson, M. T., & Bainbridge, J. L. (2021). Continuing Burden of Refractory Epilepsy. The Annals of pharmacotherapy, 55(3), 406–408. https://doi.org/10.1177/1060028020948056
[9] Bazhanova, E. D., Kozlov, A. A., & Litovchenko, A. V. (2021). Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review. Brain sciences, 11(5), 663. https://doi.org/10.3390/brainsci11050663
[10] Knopek, M., Iwanicka, J. & Boryczka, G. (2024). Drug-resistant epilepsy and its selected complications in children. Annales Academiae Medicae Silesiensis, 78, 127–137. https://doi.org/10.18794/aams/178525
[11] Taylor, R. S., Sander, J. W., Taylor, R. J., & Baker, G. A. (2011). Predictors of health-related quality of life and costs in adults with epilepsy: a systematic review. Epilepsia, 52(12), 2168–2180. https://doi.org/10.1111/j.1528-1167.2011.03213.x
[12] Nasiri, J., Ghazzavi, M., Sedghi, M., & Pirzadeh, Z. (2023). Causes and Risk Factors of Drug-Resistant Epilepsy in Children. Iranian journal of child neurology, 17(3), 89–97. https://doi.org/10.22037/ijcn.v17i1.33814
[13] Sisodiya S. (2007). Etiology and management of refractory epilepsies. Nature clinical practice. Neurology, 3(6), 320–330. https://doi.org/10.1038/ncpneuro0521
[14] Brodie, M. J., & Dichter, M. A. (1996). Antiepileptic drugs. The New England journal of medicine, 334(3), 168–175. https://doi.org/10.1056/NEJM199601183340308
[15] Wheless J. W. (2008). History of the ketogenic diet. Epilepsia, 49 Suppl 8, 3–5. https://doi.org/10.1111/j.1528-1167.2008.01821.x
[16] Sampaio L. P. (2016). Ketogenic diet for epilepsy treatment. Arquivos de neuro-psiquiatria, 74(10), 842–848. https://doi.org/10.1590/0004-282X20160116
[17] McDonald, T. J. W., & Cervenka, M. C. (2020). Ketogenic Diet Therapies for Seizures and Status Epilepticus. Seminars in neurology, 40(6), 719–729. https://doi.org/10.1055/s-0040-1719077
[18] Neal, E. G., Chaffe, H., Schwartz, R. H., Lawson, M. S., Edwards, N., Fitzsimmons, G., Whitney, A., & Cross, J. H. (2008). The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. The Lancet. Neurology, 7(6), 500–506. https://doi.org/10.1016/S1474-4422(08)70092-9
[19] Gururaj, A., Sztriha, L., Hertecant, J., & Eapen, V. (2006). Clinical predictors of intractable childhood epilepsy. Journal of psychosomatic research, 61(3), 343–347. https://doi.org/10.1016/j.jpsychores.2006.07.018
[20] Kalilani, L., Sun, X., Pelgrims, B., Noack-Rink, M., & Villanueva, V. (2018). The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia, 59(12), 2179–2193. https://doi.org/10.1111/epi.14596
[21] Aaberg, K. M., Gunnes, N., Bakken, I. J., Lund Søraas, C., Berntsen, A., Magnus, P., Lossius, M. I., Stoltenberg, C., Chin, R., & Surén, P. (2017). Incidence and Prevalence of Childhood Epilepsy: A Nationwide Cohort Study. Pediatrics, 139(5), e20163908. https://doi.org/10.1542/peds.2016-3908
[22] Zuo, R. R., Jin, M., & Sun, S. Z. (2024). Etiological analysis of 167 cases of drug-resistant epilepsy in children. Italian journal of pediatrics, 50(1), 50. https://doi.org/10.1186/s13052-024-01619-8
[23] Scheffer, I. E., Berkovic, S., Capovilla, G., Connolly, M. B., French, J., Guilhoto, L., Hirsch, E., Jain, S., Mathern, G. W., Moshé, S. L., Nordli, D. R., Perucca, E., Tomson, T., Wiebe, S., Zhang, Y. H., & Zuberi, S. M. (2017). ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 58(4), 512–521. https://doi.org/10.1111/epi.13709
[24] Kabat, J., & Król, P. (2012). Focal cortical dysplasia - review. Polish journal of radiology, 77(2), 35–43. https://doi.org/10.12659/pjr.882968
[25] Auvin, S., Galanopoulou, A. S., Moshé, S. L., Potschka, H., Rocha, L., Walker, M. C., & TASK1 workgroup on drug-resistant epilepsy of the ILAE/AES Joint Translational Task Force (2023). Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia, 64(11), 2891–2908. https://doi.org/10.1111/epi.17751
[26] Borowicz-Reutt, K., Krawczyk, M., & Czernia, J. (2024). Ketogenic Diet in the Treatment of Epilepsy. Nutrients, 16(9), 1258. https://doi.org/10.3390/nu16091258
[27] Pondel, N., Liśkiewicz, D., & Liśkiewicz, A. (2020). Dieta ketogeniczna - mechanizm działania i perspektywy zastosowania w terapii: dane z badań klinicznych [Ketogenic diet – mechanism of action and perspectives for the use in the therapy: data from clinical studies]. Postepy biochemii, 66(3), 270–286. https://doi.org/10.18388/pb.2020_342
[28] Chen, S., Su, X., Feng, Y., Li, R., Liao, M., Fan, L., Liu, J., Chen, S., Zhang, S., Cai, J., Zhu, S., Niu, J., Ye, Y., Lo, K., & Zeng, F. (2023). Ketogenic Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analysis. Nutrients, 15(19), 4161. https://doi.org/10.3390/nu15194161
[29] Zarnowska IM. Therapeutic Use of the Ketogenic Diet in Refractory Epilepsy: What We Know and What Still Needs to Be Learned. Nutrients. 2020; 12(9):2616. https://doi.org/10.3390/nu12092616
[30] Dhillon KK, Gupta S. Biochemistry, Ketogenesis. 2023 Feb 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 29630231.
[31] Jensen, N. J., Wodschow, H. Z., Nilsson, M., & Rungby, J. (2020). Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. International journal of molecular sciences, 21(22), 8767. https://doi.org/10.3390/ijms21228767
[32] Mishra, P., Singh, S. C., & Ramadass, B. (2024). Drug resistant epilepsy and ketogenic diet: A narrative review of mechanisms of action. World neurosurgery: X, 22, 100328. https://doi.org/10.1016/j.wnsx.2024.100328
[33] Sepehrar, S., Sadeghi, T., Kossoff, E., Nikoonia, M., Zarei, M., Toosi, M. B., & Talebi, S. (2025). Short and long-term side effects of the Classic Ketogenic Diet in pediatric epilepsy treatment: A systematic review of clinical trials. Seizure, 131, 382–390. https://doi.org/10.1016/j.seizure.2025.08.005
[34] Lambrechts, D. A., de Kinderen, R. J., Vles, J. S., de Louw, A. J., Aldenkamp, A. P., & Majoie, H. J. (2017). A randomized controlled trial of the ketogenic diet in refractory childhood epilepsy. Acta neurologica Scandinavica, 135(2), 231–239. https://doi.org/10.1111/ane.12592
[35] Baby, N., Vinayan, K. P., Pavithran, N., & Grace Roy, A. (2018). A pragmatic study on efficacy, tolerability and long term acceptance of ketogenic diet therapy in 74 South Indian children with pharmacoresistant epilepsy. Seizure, 58, 41–46. https://doi.org/10.1016/j.seizure.2018.03.020
[36] Perna, S., Ferraris, C., Guglielmetti, M., Alalwan, T. A., Mahdi, A. M., Guido, D., & Tagliabue, A. (2022). Effects of Classic Ketogenic Diet in Children with Refractory Epilepsy: A Retrospective Cohort Study in Kingdom of Bahrain. Nutrients, 14(9), 1744. https://doi.org/10.3390/nu14091744
[37] Pfeifer, H. H., & Thiele, E. A. (2005). Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology, 65(11), 1810–1812. https://doi.org/10.1212/01.wnl.0000187071.24292.9e
[38] Muzykewicz, D. A., Lyczkowski, D. A., Memon, N., Conant, K. D., Pfeifer, H. H., & Thiele, E. A. (2009). Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy. Epilepsia, 50(5), 1118–1126. https://doi.org/10.1111/j.1528-1167.2008.01959.x
[39] Schwechter, E. M., Velísková, J., & Velísek, L. (2003). Correlation between extracellular glucose and seizure susceptibility in adult rats. Annals of neurology, 53(1), 91–101. https://doi.org/10.1002/ana.10415
[40] Depboylu, G. Y., Bildik, O., Kaner, G., Gençpınar, P., & Dündar, N. O. (2025). The effects of low glycemic index diet on epileptic seizure frequency, oxidative stress, mental health, and health-related quality of life in children with drug-resistant epilepsy. Seizure, 127, 57–65. https://doi.org/10.1016/j.seizure.2025.03.010
[41] Lakshminarayanan, K., Agarawal, A., Panda, P. K., Sinha, R., Tripathi, M., Pandey, R. M., & Gulati, S. (2021). Efficacy of low glycemic index diet therapy (LGIT) in children aged 2-8 years with drug-resistant epilepsy: A randomized controlled trial. Epilepsy research, 171, 106574. https://doi.org/10.1016/j.eplepsyres.2021.106574
[42] Rohani, P., Shervin Badv, R., Sohouli, M. H., & Guimarães, N. S. (2024). The efficacy of low glycemic index diet on seizure frequency in pediatric patients with epilepsy: A systematic review and meta-analysis. Seizure, 117, 150–158. https://doi.org/10.1016/j.seizure.2024.02.013
[43] Panda, P. K., Chakrabarty, B., Jauhari, P., Sharawat, I. K., Agarwal, A., Jain, V., Pandey, R. M., & Gulati, S. (2024). Efficacy of daily versus intermittent low glycemic index therapy diet in children with drug-resistant epilepsy: A randomized controlled trial. Epilepsy research, 201, 107322. https://doi.org/10.1016/j.eplepsyres.2024.107322
[44] Haridas, B., Testino, A., & Kossoff, E. H. (2025). Ketogenic diet therapy for the treatment of pediatric epilepsy. Epileptic disorders : international epilepsy journal with videotape, 27(2), 144–155. https://doi.org/10.1002/epd2.20320
[45] Manral, M., Dwivedi, R., Gulati, S., Kaur, K., Nehra, A., Pandey, R. M., Upadhyay, A. D., Sapra, S., & Tripathi, M. (2023). Safety, Efficacy, and Tolerability of Modified Atkins Diet in Persons With Drug-Resistant Epilepsy: A Randomized Controlled Trial. Neurology, 100(13), e1376–e1385. https://doi.org/10.1212/WNL.0000000000206776
[46] Kim, J. A., Yoon, J. R., Lee, E. J., Lee, J. S., Kim, J. T., Kim, H. D., & Kang, H. C. (2016). Efficacy of the classic ketogenic and the modified Atkins diets in refractory childhood epilepsy. Epilepsia, 57(1), 51–58. https://doi.org/10.1111/epi.13256
[47] Poorshiri, B., Barzegar, M., Tahmasebi, S., Shiva, S., Raeisi, S., & Ebadi, Z. (2021). The efficacy comparison of classic ketogenic diet and modified Atkins diet in children with refractory epilepsy: a clinical trial. Acta neurologica Belgica, 121(2), 483–487. https://doi.org/10.1007/s13760-019-01225-0
[48] El-Shafie, A. M., Bahbah, W. A., Abd El Naby, S. A., Omar, Z. A., Basma, E. M., Hegazy, A. A. A., & El Zefzaf, H. M. S. (2023). Impact of two ketogenic diet types in refractory childhood epilepsy. Pediatric research, 94(6), 1978–1989. https://doi.org/10.1038/s41390-023-02554-w
[49] Anand, V., Gulati, S., Agarwala, A., Kamila, G., Mahesan, A., Sondhi, V., Gupta, K. L., Chakrabarty, B., Jauhari, P., Panda, P. K., & Pandey, R. M. (2025). Comparison of efficacy of low glycemic index treatment and modified Atkins diet among children with drug-resistant epilepsy: A randomized non-inferiority trial. Epilepsia, 66(5), 1550–1559. https://doi.org/10.1111/epi.18292
[50] Sondhi, V., Agarwala, A., Pandey, R. M., Chakrabarty, B., Jauhari, P., Lodha, R., Toteja, G. S., Sharma, S., Paul, V. K., Kossoff, E., & Gulati, S. (2020). Efficacy of Ketogenic Diet, Modified Atkins Diet, and Low Glycemic Index Therapy Diet Among Children With Drug-Resistant Epilepsy: A Randomized Clinical Trial. JAMA pediatrics, 174(10), 944–951. https://doi.org/10.1001/jamapediatrics.2020.2282
[51] Kumar, A., Kumari, S., & Singh, D. (2022). Insights into the Cellular Interactions and Molecular Mechanisms of Ketogenic Diet for Comprehensive Management of Epilepsy. Current neuropharmacology, 20(11), 2034–2049. https://doi.org/10.2174/1570159X20666220420130109
[52] Calderón, N., Betancourt, L., Hernández, L., & Rada, P. (2017). A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study. Neuroscience letters, 642, 158–162. https://doi.org/10.1016/j.neulet.2017.02.014
[53] Juge, N., Gray, J. A., Omote, H., Miyaji, T., Inoue, T., Hara, C., Uneyama, H., Edwards, R. H., Nicoll, R. A., & Moriyama, Y. (2010). Metabolic control of vesicular glutamate transport and release. Neuron, 68(1), 99–112. https://doi.org/10.1016/j.neuron.2010.09.002
[54] Giménez-Cassina, A., Martínez-François, J. R., Fisher, J. K., Szlyk, B., Polak, K., Wiwczar, J., Tanner, G. R., Lutas, A., Yellen, G., & Danial, N. N. (2012). BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures. Neuron, 74(4), 719–730. https://doi.org/10.1016/j.neuron.2012.03.032
[55] Yellen G. (2008). Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet. Epilepsia, 49 Suppl 8(Suppl 8), 80–82. https://doi.org/10.1111/j.1528-1167.2008.01843.x
[56] Chang, P., Augustin, K., Boddum, K., Williams, S., Sun, M., Terschak, J. A., Hardege, J. D., Chen, P. E., Walker, M. C., & Williams, R. S. (2016). Seizure control by decanoic acid through direct AMPA receptor inhibition. Brain : a journal of neurology, 139(Pt 2), 431–443. https://doi.org/10.1093/brain/awv325
[57] Boison D. (2006). Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends in pharmacological sciences, 27(12), 652–658. https://doi.org/10.1016/j.tips.2006.10.008
[58] Rogawski, M. A., Löscher, W., & Rho, J. M. (2016). Mechanisms of Action of Antiseizure Drugs and the Ketogenic Diet. Cold Spring Harbor perspectives in medicine, 6(5), a022780. https://doi.org/10.1101/cshperspect.a022780
[59] Rho, J. M., Shao, L. R., & Stafstrom, C. E. (2019). 2-Deoxyglucose and Beta-Hydroxybutyrate: Metabolic Agents for Seizure Control. Frontiers in cellular neuroscience, 13, 172. https://doi.org/10.3389/fncel.2019.00172
[60] Milder, J., & Patel, M. (2012). Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy research, 100(3), 295–303. https://doi.org/10.1016/j.eplepsyres.2011.09.021
[61] Youm, Y. H., Nguyen, K. Y., Grant, R. W., Goldberg, E. L., Bodogai, M., Kim, D., D'Agostino, D., Planavsky, N., Lupfer, C., Kanneganti, T. D., Kang, S., Horvath, T. L., Fahmy, T. M., Crawford, P. A., Biragyn, A., Alnemri, E., & Dixit, V. D. (2015). The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nature medicine, 21(3), 263–269. https://doi.org/10.1038/nm.3804
[62] Choi, J. N., Song, J. E., Shin, J. I., Kim, H. D., Kim, M. J., & Lee, J. S. (2010). Renal stone associated with the ketogenic diet in a 5-year old girl with intractable epilepsy. Yonsei medical journal, 51(3), 457–459. https://doi.org/10.3349/ymj.2010.51.3.457
[63] Faheem, Y., Jaiswal, A., Shergill, K., Boppana, K., Almansouri, N. E., Bakkannavar, S., & Yu, A. K. (2024). Keto Clarity: A Comprehensive Systematic Review Exploring the Efficacy, Safety, and Mechanisms of Ketogenic Diet in Pediatric Epilepsy. Cureus, 16(2), e54863. https://doi.org/10.7759/cureus.54863
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jakub Jopek, Hanna Tymchenko, Martyna Świątecka, Jakub Kaźmierczyk, Sylwia Bryksy, Natalia Popczyk, Agnieszka Przybyłowska, Ewa Buczkowska, Aleksandra Marciszewska, Michał Popczyk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 5
Number of citations: 0