Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Vagus Nerve Stimulation in Neurology and Beyond: A Comprehensive Review of Clinical Use, Mechanisms, Innovations and Future Directions
  • Home
  • /
  • Vagus Nerve Stimulation in Neurology and Beyond: A Comprehensive Review of Clinical Use, Mechanisms, Innovations and Future Directions
  1. Home /
  2. Archives /
  3. Vol. 49 (2026) /
  4. Medical Sciences

Vagus Nerve Stimulation in Neurology and Beyond: A Comprehensive Review of Clinical Use, Mechanisms, Innovations and Future Directions

Authors

  • Michał Janiszewski Mazovian "Bródnowski" Hospital, Ludwika Kondratowicza 8, 03-242 Warsaw, Poland https://orcid.org/0009-0007-8932-3808
  • Marcin Komorowski Międzylesie Specialist Hospital, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0009-1423-7176
  • Joanna Piecek Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland https://orcid.org/0009-0003-6729-2386
  • Marta Omiecińska Międzylesie Specialist Hospital, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0002-3134-8141
  • Natalia Surosz Międzylesie Specialist Hospital, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0005-1939-151X
  • Aleksandra Graczyk Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland https://orcid.org/0009-0006-3505-1416
  • Michał Grochowalski Nicolaus Copernicus Memorial Hospital, 93-513 Lodz, Poland https://orcid.org/0009-0005-0293-9411
  • Jakub Szydło Independent Public Complex of Outpatient Health Care Centers Warsaw Żoliborz-Bielany, Karola Szajnochy 8, 01-637 Warsaw, Poland https://orcid.org/0009-0009-1092-2571
  • Dominika Ziętara Międzylesie Specialist Hospital, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0000-2535-7995
  • Kacper Kmieć Międzylesie Specialist Hospital, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0000-8076-2387

DOI:

https://doi.org/10.12775/QS.2026.49.67248

Keywords

Vagus Nerve Stimulation, Biomarkers, Drug-Resistant Epilepsy, Neuroimmunomodulation, Closed-Loop Neuromodulation, Bioelectronic Medicine

Abstract

Background:

Vagus nerve stimulation (VNS) has evolved from a treatment for drug-resistant epilepsy (DRE) into a broader neuromodulatory platform with expanding applications in neurology, psychiatry, immunology, and cardiology. Technological advances, particularly in non-invasive and adaptive modalities, have renewed interest in its therapeutic potential.

Aim:

To provide a comprehensive review of the clinical applications, mechanisms of action, safety profile, and emerging technological innovations in VNS, with emphasis on non-invasive techniques, adaptive stimulation, candidate biomarkers, and associated ethical considerations.

Material and Methods:

This narrative review synthesizes findings from peer-reviewed studies, clinical trials, and experimental reports identified through targeted searches in PubMed, Google Scholar, and related databases.

Results:

VNS demonstrates consistent efficacy in reducing seizure frequency in epilepsy and improving outcomes in treatment-resistant depression (TRD), inflammatory conditions, and cardiovascular disorders. Mechanistically, it modulates brainstem–cortical circuits, autonomic tone, and neuroimmune signaling pathways. Side effects are typically mild and transient. Non-invasive and closed-loop systems show promise in enhancing individualization and tolerability, although challenges remain in terms of standardization, long-term data, and equitable access.

Conclusions:

VNS represents a safe, increasingly personalized intervention with broad therapeutic scope. Future research should prioritize biomarker validation, optimization of stimulation paradigms, and integration with artificial intelligence (AI) and digital health tools, ensuring ethical and scalable implementation across diverse clinical populations.

References

[1] CORNING JL. CONSIDERATIONS ON THE PATHOLOY AND THERAPEUTICS OF EPILEPSY. J Nerv Ment Dis 1883;10.

[2] Bailey P, Bremer F. A SENSORY CORTICAL REPRESENTATION OF THE VAGUS NERVE: WITH A NOTE ON THE EFFECTS OF LOW BLOOD PRESSURE ON THE CORTICAL ELECTROGRAM. J Neurophysiol 1938;1:405–12. https://doi.org/10.1152/jn.1938.1.5.405.

[3] Zabara J. Peripheral control of hypersynchronous discharge in epilepsy. Electroencephalogr Clin Neurophysiol 1985;61:S162. https://doi.org/10.1016/0013-4694(85)90626-1.

[4] Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol 2002;1:477–82. https://doi.org/10.1016/S1474-4422(02)00220-X.

[5] Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al. Vagus nerve stimulation therapy for partial-onset seizures. Neurology 1998;51:48–55. https://doi.org/10.1212/WNL.51.1.48.

[6] Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, et al. Vagus Nerve Stimulation for Treatment of Partial Seizures: 1. A Controlled Study of Effect on Seizures. Epilepsia 1994;35:616–26. https://doi.org/10.1111/j.1528-1157.1994.tb02482.x.

[7] Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE. Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 2000;42:203–10. https://doi.org/10.1016/S0920-1211(00)00181-9.

[8] Sadler R, Purdy R, Rahey S. Vagal Nerve Stimulation Aborts Migraine in Patient with Intractable Epilepsy. Cephalalgia 2002;22:482–4. https://doi.org/10.1046/j.1468-2982.2002.00387.x.

[9] Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405:458–62. https://doi.org/10.1038/35013070.

[10] Ogbonnaya S, Kaliaperumal C. Vagal nerve stimulator: Evolving trends. J Nat Sci Biol Med 2013;4:8–13. https://doi.org/10.4103/0976-9668.107254.

[11] Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci Basic Clin 2000;85:141–7. https://doi.org/10.1016/S1566-0702(00)00233-2.

[12] Olofsson PS, Katz DA, Rosas-Ballina M, Levine YA, Ochani M, Valdés-Ferrer SI, et al. α7 Nicotinic Acetylcholine Receptor (α7nAChR) Expression in Bone Marrow-Derived Non-T Cells Is Required for the Inflammatory Reflex. Mol Med 2012;18:539–43. https://doi.org/10.2119/molmed.2011.00405.

[13] Brougher J, Sanchez CA, Aziz US, Gove KF, Thorn CA. Vagus Nerve Stimulation Induced Motor Map Plasticity Does Not Require Cortical Dopamine. Front Neurosci 2021;Volume 15-2021. https://doi.org/10.3389/fnins.2021.693140.

[14] Chen Z, Liu K. Mechanism and Applications of Vagus Nerve Stimulation. Curr Issues Mol Biol 2025;47. https://doi.org/10.3390/cimb47020122.

[15] Rychlicki F, Zamponi N, Cesaroni E, Corpaci L, Trignani R, Ducati A, et al. Complications of vagal nerve stimulation for epilepsy in children. Neurosurg Rev 2006;29:103–7. https://doi.org/10.1007/s10143-005-0005-5.

[16] Yakunina N, Kim SS, Nam E-C. Optimization of Transcutaneous Vagus Nerve Stimulation Using Functional MRI. Neuromodulation 2017;20:290–300. https://doi.org/10.1111/ner.12541.

[17] Frangos E, Komisaruk BR. Access to Vagal Projections via Cutaneous Electrical Stimulation of the Neck: fMRI Evidence in Healthy Humans. Brain Stimul Basic Transl Clin Res Neuromodulation 2017;10:19–27. https://doi.org/10.1016/j.brs.2016.10.008.

[18] Frangos E, Ellrich J, Komisaruk BR. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul Basic Transl Clin Res Neuromodulation 2015;8:624–36. https://doi.org/10.1016/j.brs.2014.11.018.

[19] Cook DN, Thompson S, Stomberg-Firestein S, Bikson M, George MS, Jenkins DD, et al. Design and validation of a closed-loop, motor-activated auricular vagus nerve stimulation (MAAVNS) system for neurorehabilitation. Brain Stimul Basic Transl Clin Res Neuromodulation 2020;13:800–3. https://doi.org/10.1016/j.brs.2020.02.028.

[20] Penry JK, Dean JC. Prevention of Intractable Partial Seizures by Intermittent Vagal Stimulation in Humans: Preliminary Results. Epilepsia 1990;31:S40–3. https://doi.org/10.1111/j.1528-1157.1990.tb05848.x.

[21] Afra P, Adamolekun B, Aydemir S, Watson GDR. Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy. Front Med Technol 2021;Volume 3-2021.

[22] Labiner DM, Ahern GL. Vagus nerve stimulation therapy in depression and epilepsy: therapeutic parameter settings. Acta Neurol Scand 2007;115:23–33. https://doi.org/10.1111/j.1600-0404.2006.00732.x.

[23] Badran BW, Yu AB, Adair D, Mappin G, DeVries WH, Jenkins DD, et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J Vis Exp 2019:e58984. https://doi.org/10.3791/58984.

[24] Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex—linking immunity and metabolism. Nat Rev Endocrinol 2012;8:743–54. https://doi.org/10.1038/nrendo.2012.189.

[25] Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev 1973;53:159–227. https://doi.org/10.1152/physrev.1973.53.1.159.

[26] Fahoum F, Boffini M, Kann L, Faini S, Gordon C, Tzadok M, et al. VNS parameters for clinical response in Epilepsy. Brain Stimul Basic Transl Clin Res Neuromodulation 2022;15:814–21. https://doi.org/10.1016/j.brs.2022.05.016.

[27] Hein E, Nowak M, Kiess O, Biermann T, Bayerlein K, Kornhuber J, et al. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J Neural Transm 2013;120:821–7. https://doi.org/10.1007/s00702-012-0908-6.

[28] Silberstein SD, Calhoun AH, Lipton RB, Grosberg BM, Cady RK, Dorlas S, et al. Chronic migraine headache prevention with noninvasive vagus nerve stimulation. Neurology 2016;87:529–38. https://doi.org/10.1212/WNL.0000000000002918.

[29] Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav 2018;88:2–10. https://doi.org/10.1016/j.yebeh.2018.06.032.

[30] Yuan H, Silberstein SD. Vagus Nerve and Vagus Nerve Stimulation, a Comprehensive Review: Part II. Headache J Head Face Pain 2016;56:259–66. https://doi.org/10.1111/head.12650.

[31] Toffa DH, Touma L, El Meskine T, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure - Eur J Epilepsy 2020;83:104–23. https://doi.org/10.1016/j.seizure.2020.09.027.

[32] KLINKENBERG S, AALBERS MW, VLES JSH, CORNIPS EMJ, RIJKERS K, LEENEN L, et al. Vagus nerve stimulation in children with intractable epilepsy: a randomized controlled trial. Dev Med Child Neurol 2012;54:855–61. https://doi.org/10.1111/j.1469-8749.2012.04305.x.

[33] Amar AP. Vagus nerve stimulation for the treatment of intractable epilepsy. Expert Rev Neurother 2007;7:1763–73. https://doi.org/10.1586/14737175.7.12.1763.

[34] Fernandez-Baca Vaca G, Park JT. Focal EEG abnormalities and focal ictal semiology in generalized epilepsy. Seizure - Eur J Epilepsy 2020;77:7–14. https://doi.org/10.1016/j.seizure.2019.12.013.

[35] Boon P, Raedt R, de Herdt V, Wyckhuys T, Vonck K. Electrical Stimulation for the Treatment of Epilepsy. Nontradit Epilepsy Treat Approaches 2009;6:218–27. https://doi.org/10.1016/j.nurt.2008.12.003.

[36] Tsai J-D, Fan P-C, Lee W-T, Hung P-L, Hung K-L, Wang H-S, et al. Vagus nerve stimulation in pediatric patients with failed epilepsy surgery. Acta Neurol Belg 2021;121:1305–9. https://doi.org/10.1007/s13760-020-01303-8.

[37] Elliott RE, Morsi A, Kalhorn SP, Marcus J, Sellin J, Kang M, et al. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: Long-term outcomes and predictors of response. Epilepsy Behav 2011;20:57–63. https://doi.org/10.1016/j.yebeh.2010.10.017.

[38] Abdelmoity AT, Le Pichon J-B, Abdelmoity SA, Sherman AK, Hall AS, Abdelmoity AT. Combined use of the ketogenic diet and vagus nerve stimulation in pediatric drug-resistant epilepsy. Epilepsia Open 2021;6:112–9. https://doi.org/10.1002/epi4.12453.

[39] Tzadok M, Harush A, Nissenkorn A, Zauberman Y, Feldman Z, Ben-zeev B. Clinical outcomes of closed-loop vagal nerve stimulation in patients with refractory epilepsy. Seizure - Eur J Epilepsy 2019;71:140–4. https://doi.org/10.1016/j.seizure.2019.07.006.

[40] Scherrmann J, Hoppe C, Kral T, Schramm J, Elger CE. Vagus Nerve Stimulation: Clinical Experience in a Large Patient Series. J Clin Neurophysiol 2001;18.

[41] Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response: A review. J Neurosurg JNS 2011;115:1248–55. https://doi.org/10.3171/2011.7.JNS11977.

[42] Carreno FR, Frazer A. Vagal Nerve Stimulation for Treatment-Resistant Depression. Neurotherapeutics 2017;14:716–27. https://doi.org/10.1007/s13311-017-0537-8.

[43] Conway CR, Xiong W. The Mechanism of Action of Vagus Nerve Stimulation in Treatment-Resistant Depression: Current Conceptualizations. Neuromodulation 2018;41:395–407. https://doi.org/10.1016/j.psc.2018.04.005.

[44] Badran BW, Mithoefer OJ, Summer CE, LaBate NT, Glusman CE, Badran AW, et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul Basic Transl Clin Res Neuromodulation 2018;11:699–708. https://doi.org/10.1016/j.brs.2018.04.004.

[45] Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul Basic Transl Clin Res Neuromodulation 2018;11:492–500. https://doi.org/10.1016/j.brs.2017.12.009.

[46] Aaronson ST, Carpenter LL, Conway CR, Reimherr FW, Lisanby SH, Schwartz TL, et al. Vagus Nerve Stimulation Therapy Randomized to Different Amounts of Electrical Charge for Treatment-Resistant Depression: Acute and Chronic Effects. Brain Stimul Basic Transl Clin Res Neuromodulation 2013;6:631–40. https://doi.org/10.1016/j.brs.2012.09.013.

[47] Berry SM, Broglio ,Kristine, Bunker ,Mark, Jayewardene ,Amara, Olin ,Bryan, and Rush AJ. A patient-level meta-analysis of studies evaluating vagus nerve stimulation therapy for treatment-resistant depression. Med Devices Evid Res 2013;6:17–35. https://doi.org/10.2147/MDER.S41017.

[48] Bottomley JM, LeReun C, Diamantopoulos A, Mitchell S, Gaynes BN. Vagus nerve stimulation (VNS) therapy in patients with treatment resistant depression: A systematic review and meta-analysis. Compr Psychiatry 2020;98:152156. https://doi.org/10.1016/j.comppsych.2019.152156.

[49] Badran BW, Brown JC, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, et al. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul Basic Transl Clin Res Neuromodulation 2018;11:947–8. https://doi.org/10.1016/j.brs.2018.06.003.

[50] Peuker ET, Filler TJ. The nerve supply of the human auricle. Clin Anat 2002;15:35–7. https://doi.org/10.1002/ca.1089.

[51] Liu C, Tang H, Liu C, Ma J, Liu G, Niu L, et al. Transcutaneous auricular vagus nerve stimulation for post-stroke depression: A double-blind, randomized, placebo-controlled trial. J Affect Disord 2024;354:82–8. https://doi.org/10.1016/j.jad.2024.03.005.

[52] Rong P, Liu J, Wang L, Liu R, Fang J, Zhao J, et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. J Affect Disord 2016;195:172–9. https://doi.org/10.1016/j.jad.2016.02.031.

[53] Shiozawa P, Silva ME da, Carvalho TC de, Cordeiro Q, Brunoni AR, Fregni F. Transcutaneous vagus and trigeminal nerve stimulation for neuropsychiatric disorders: a systematic review. Arq Neuropsiquiatr 2014;72:542–7. https://doi.org/10.1590/0004-282x20140061.

[54] Yuan H, Silberstein SD. Vagus Nerve Stimulation and Headache. Headache J Head Face Pain 2017;57:29–33. https://doi.org/10.1111/head.12721.

[55] Goadsby P, Grosberg B, Mauskop A, Cady R, Simmons K. Effect of noninvasive vagus nerve stimulation on acute migraine: An open-label pilot study. Cephalalgia 2014;34:986–93. https://doi.org/10.1177/0333102414524494.

[56] Tassorelli C, Grazzi L, de Tommaso M, Pierangeli G, Martelletti P, Rainero I, et al. Noninvasive vagus nerve stimulation as acute therapy for migraine. Neurology 2018;91:e364–73. https://doi.org/10.1212/WNL.0000000000005857.

[57] Diener H-C, Goadsby PJ, Ashina M, Al-Karagholi MA-M, Sinclair A, Mitsikostas D, et al. Non-invasive vagus nerve stimulation (nVNS) for the preventive treatment of episodic migraine: The multicentre, double-blind, randomised, sham-controlled PREMIUM trial. Cephalalgia 2019;39:1475–87. https://doi.org/10.1177/0333102419876920.

[58] Silberstein SD, Mechtler LL, Kudrow DB, Calhoun AH, McClure C, Saper JR, et al. Non–Invasive Vagus Nerve Stimulation for the ACute Treatment of Cluster Headache: Findings From the Randomized, Double-Blind, Sham-Controlled ACT1 Study. Headache J Head Face Pain 2016;56:1317–32. https://doi.org/10.1111/head.12896.

[59] Goadsby PJ, de Coo IF, Silver N, Tyagi A, Ahmed F, Gaul C, et al. Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: A randomized, double-blind, sham-controlled ACT2 study. Cephalalgia 2018;38:959–69. https://doi.org/10.1177/0333102417744362.

[60] Hays SA. Enhancing Rehabilitative Therapies with Vagus Nerve Stimulation. Neurotherapeutics 2016;13:382–94. https://doi.org/10.1007/s13311-015-0417-z.

[61] Dawson J, Liu CY, Francisco GE, Cramer SC, Wolf SL, Dixit A, et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): a randomised, blinded, pivotal, device trial. The Lancet 2021;397:1545–53. https://doi.org/10.1016/S0140-6736(21)00475-X.

[62] Redgrave JN, Moore L, Oyekunle T, Ebrahim M, Falidas K, Snowdon N, et al. Transcutaneous Auricular Vagus Nerve Stimulation with Concurrent Upper Limb Repetitive Task Practice for Poststroke Motor Recovery: A Pilot Study. J Stroke Cerebrovasc Dis 2018;27:1998–2005. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056.

[63] Baig SS, Falidas K, Laud PJ, Snowdon N, Farooq MU, Ali A, et al. Transcutaneous Auricular Vagus Nerve Stimulation with Upper Limb Repetitive Task Practice May Improve Sensory Recovery in Chronic Stroke. J Stroke Cerebrovasc Dis 2019;28. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104348.

[64] Wu D, Ma J, Zhang L, Wang S, Tan B, Jia G. Effect and Safety of Transcutaneous Auricular Vagus Nerve Stimulation on Recovery of Upper Limb Motor Function in Subacute Ischemic Stroke Patients: A Randomized Pilot Study. Neural Plast 2020;2020:8841752. https://doi.org/10.1155/2020/8841752.

[65] Peng X, Baker-Vogel B, Sarhan M, Short EB, Zhu W, Liu H, et al. Left or right ear? A neuroimaging study using combined taVNS/fMRI to understand the interaction between ear stimulation target and lesion location in chronic stroke. Brain Stimul Basic Transl Clin Res Neuromodulation 2023;16:1144–53. https://doi.org/10.1016/j.brs.2023.07.050.

[66] Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L. Crohn’s disease. The Lancet 2017;389:1741–55. https://doi.org/10.1016/S0140-6736(16)31711-1.

[67] Nezami BG, Srinivasan S. Enteric Nervous System in the Small Intestine: Pathophysiology and Clinical Implications. Curr Gastroenterol Rep 2010;12:358–65. https://doi.org/10.1007/s11894-010-0129-9.

[68] Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, et al. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn’s and Other Inflammatory Bowel Diseases. Cells 2022;11. https://doi.org/10.3390/cells11244103.

[69] Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. The Lancet 2016;388:2023–38. https://doi.org/10.1016/S0140-6736(16)30173-8.

[70] Koopman FA, Schuurman PR, Vervoordeldonk MJ, Tak PP. Vagus nerve stimulation: A new bioelectronics approach to treat rheumatoid arthritis? Concepts Pathog Emerg Treat Inflamm Arthritis 2014;28:625–35. https://doi.org/10.1016/j.berh.2014.10.015.

[71] Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart 2007;93:1137. https://doi.org/10.1136/hrt.2003.025270.

[72] Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol 2012;59:117–22. https://doi.org/10.1016/j.jjcc.2011.12.006.

[73] Hamann JJ, Ruble SB, Stolen C, Wang M, Gupta RC, Rastogi S, et al. Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. Eur J Heart Fail 2013;15:1319–26. https://doi.org/10.1093/eurjhf/hft118.

[74] Gold Michael R., Van Veldhuisen Dirk J., Hauptman Paul J., Borggrefe Martin, Kubo Spencer H., Lieberman Randy A., et al. Vagus Nerve Stimulation for the Treatment of Heart Failure. JACC 2016;68:149–58. https://doi.org/10.1016/j.jacc.2016.03.525.

[75] Ng GA. Vagal modulation of cardiac ventricular arrhythmia. Exp Physiol 2014;99:295–9. https://doi.org/10.1113/expphysiol.2013.072652.

[76] Iwamiya S, Ihara K, Nitta G, Sasano T. Atrial Fibrillation and Underlying Structural and Electrophysiological Heterogeneity. Int J Mol Sci 2024;25. https://doi.org/10.3390/ijms251810193.

[77] Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics—2015 Update. Circulation 2015;131:e29–322. https://doi.org/10.1161/CIR.0000000000000152.

[78] Yu L, Scherlag BJ, Sha Y, Li S, Sharma T, Nakagawa H, et al. Interactions between atrial electrical remodeling and autonomic remodeling: How to break the vicious cycle. Heart Rhythm 2012;9:804–9. https://doi.org/10.1016/j.hrthm.2011.12.023.

[79] Carpenter A, Frontera A, Bond R, Duncan E, Thomas G. Vagal atrial fibrillation: What is it and should we treat it? Int J Cardiol 2015;201:415–21. https://doi.org/10.1016/j.ijcard.2015.08.108.

[80] Browning KN, Verheijden S, Boeckxstaens GE. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology 2017;152:730–44. https://doi.org/10.1053/j.gastro.2016.10.046.

[81] Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 2016;22:s176-85.

[82] de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol 2016;594:5791–815. https://doi.org/10.1113/JP271538.

[83] Rush AJ, Sackeim HA, Marangell LB, George MS, Brannan SK, Davis SM, et al. Effects of 12 Months of Vagus Nerve Stimulation in Treatment-Resistant Depression: A Naturalistic Study. Biol Psychiatry 2005;58:355–63. https://doi.org/10.1016/j.biopsych.2005.05.024.

[84] Harreiter J, Roden M. Diabetes mellitus – Definition, Klassifikation, Diagnose, Screening und Prävention (Update 2023). Wien Klin Wochenschr 2023;135:7–17. https://doi.org/10.1007/s00508-022-02122-y.

[85] Payne SC, Ward G, MacIsaac RJ, Hyakumura T, Fallon JB, Villalobos J. Differential effects of vagus nerve stimulation strategies on glycemia and pancreatic secretions. Physiol Rep 2020;8:e14479. https://doi.org/10.14814/phy2.14479.

[86] Capilupi MJ, Kerath SM, Becker LB. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb Perspect Med 2020;10:a034173. https://doi.org/10.1101/cshperspect.a034173.

[87] Souza RR, Robertson ,Nicole M., Pruitt ,David T., Gonzales ,Phillip A., Hays ,Seth A., Rennaker ,Robert L., et al. Vagus nerve stimulation reverses the extinction impairments in a model of PTSD with prolonged and repeated trauma. Stress 2019;22:509–20. https://doi.org/10.1080/10253890.2019.1602604.

[88] Powers MB, Hays SA, Rosenfield D, Porter AL, Gallaway H, Chauvette G, et al. Vagus nerve stimulation therapy for treatment-resistant PTSD. Brain Stimul Basic Transl Clin Res Neuromodulation 2025;18:665–75. https://doi.org/10.1016/j.brs.2025.03.007.

[89] Engineer CT, Hays SA, Kilgard MP. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J Neurodev Disord 2017;9:20. https://doi.org/10.1186/s11689-017-9203-z.

[90] Levy ML, Levy KM, Hoff D, Amar AP, Park MS, Conklin JM, et al. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry: Clinical article. J Neurosurg Pediatr PED 2010;5:595–602. https://doi.org/10.3171/2010.3.PEDS09153.

[91] Wilfong AA, Schultz RJ. Vagus nerve stimulation for treatment of epilepsy in Rett syndrome. Dev Med Child Neurol 2006;48:683–6. https://doi.org/10.1111/j.1469-8749.2006.tb01340.x.

[92] Zhang H, Cao X, Wang L, Tong Q, Sun H, Gan C, et al. Transcutaneous auricular vagus nerve stimulation improves gait and cortical activity in Parkinson’s disease: A pilot randomized study. CNS Neurosci Ther 2023;29:3889–900. https://doi.org/10.1111/cns.14309.

[93] Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, et al. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer’s disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024;Volume 16-2024.

[94] Forsythe P, Bienenstock J, Kunze WA. Vagal Pathways for Microbiome-Brain-Gut Axis Communication. In: Lyte M, Cryan JF, editors. Microb. Endocrinol. Microbiota-Gut-Brain Axis Health Dis., New York, NY: Springer New York; 2014, p. 115–33. https://doi.org/10.1007/978-1-4939-0897-4_5.

[95] Ben-Menachem E. Vagus Nerve Stimulation, Side Effects, and Long-Term Safety. J Clin Neurophysiol 2001;18.

[96] Shankar R, Olotu VO, Cole N, Sullivan H, Jory C. Case report: Vagal nerve stimulation and late onset asystole. Seizure - Eur J Epilepsy 2013;22:312–4. https://doi.org/10.1016/j.seizure.2012.12.011.

[97] Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci 2016;113:8284–9. https://doi.org/10.1073/pnas.1605635113.

[98] Fang X, Liu H-Y, Wang Z-Y, Yang Z, Cheng T-Y, Hu C-H, et al. Preoperative Heart Rate Variability During Sleep Predicts Vagus Nerve Stimulation Outcome Better in Patients With Drug-Resistant Epilepsy. Front Neurol 2021;Volume 12-2021.

[99] Burdick JA, Brinton G, Goldstein L, Laszlo M. Heart-Rate Variability in Sleep and Wakefulness. Cardiology 2008;55:79–83. https://doi.org/10.1159/000169270.

[100] Liu H, Yang Z, Huang L, Qu W, Hao H, Li L. Heart-rate variability indices as predictors of the response to vagus nerve stimulation in patients with drug-resistant epilepsy. Epilepsia 2017;58:1015–22. https://doi.org/10.1111/epi.13738.

[101] Berthon A, Wernisch L, Stoukidi M, Thornton M, Tessier-Lariviere O, Fortier-Poisson P, et al. Using neural biomarkers to personalize dosing of vagus nerve stimulation. Bioelectron Med 2024;10:15. https://doi.org/10.1186/s42234-024-00147-4.

[102] Qi R, Wang M, Zhong Q, Wang L, Yang X, Huang B, et al. Chronic vagus nerve stimulation (VNS) altered IL-6, IL-1β, CXCL-1 and IL-13 levels in the hippocampus of rats with LiCl-pilocarpine-induced epilepsy. Brain Res 2022;1780:147800. https://doi.org/10.1016/j.brainres.2022.147800.

[103] Lagae L, Verstrepen A, Nada A, Van Loon J, Theys T, Ceulemans B, et al. Vagus nerve stimulation in children with drug-resistant epilepsy: age at implantation and shorter duration of epilepsy as predictors of better efficacy? Epileptic Disord 2015;17:308–14. https://doi.org/10.1684/epd.2015.0768.

[104] Zhang Y, Wang X, Tang C, Guan Y, Chen F, Gao Q, et al. Genetic variations of adenosine kinase as predictable biomarkers of efficacy of vagus nerve stimulation in patients with pharmacoresistant epilepsy. J Neurosurg 2022;136:726–35. https://doi.org/10.3171/2021.3.JNS21141.

[105] Wang W, Li R, Li C, Liang Q, Gao X. Advances in VNS efficiency and mechanisms of action on cognitive functions. Front Physiol 2024;Volume 15-2024.

[106] Sun FT, Morrell MJ. Closed-loop Neurostimulation: The Clinical Experience. Neurotherapeutics 2014;11:553–63. https://doi.org/10.1007/s13311-014-0280-3.

[107] H. M. Romero-Ugalde, V. Le Rolle, J. -L. Bonnet, C. Henry, P. Mabo, G. Carrault, et al. Closed-Loop Vagus Nerve Stimulation Based on State Transition Models. IEEE Trans Biomed Eng 2018;65:1630–8. https://doi.org/10.1109/TBME.2017.2759667.

[108] Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022;Volume 9-2022.

[109] PINEAU J, GUEZ A, VINCENT R, PANUCCIO G, AVOLI M. TREATING EPILEPSY VIA ADAPTIVE NEUROSTIMULATION: A REINFORCEMENT LEARNING APPROACH. Int J Neural Syst 2009;19:227–40. https://doi.org/10.1142/S0129065709001987.

[110] Heyman-Kantor R, Cockerill RG. Ethical Issues in Vagus Nerve Stimulation and Deep Brain Stimulation. Focus 2022;20:71–5. https://doi.org/10.1176/appi.focus.20210031.

[111] Shlobin NA, Rosenow JM. Ethical Considerations in the Implantation of Neuromodulatory Devices. Neuromodulation 2022;25:222–31. https://doi.org/10.1111/ner.13357.

[112] Parsons TD. Ethical Challenges of Using Virtual Environments in the Assessment and Treatment of Psychopathological Disorders. J Clin Med 2021;10. https://doi.org/10.3390/jcm10030378.

[113] Vonck K, Raedt R, Naulaerts J, De Vogelaere F, Thiery E, Van Roost D, et al. Vagus nerve stimulation…25 years later! What do we know about the effects on cognition? Neurosci Biobehav Rev 2014;45:63–71. https://doi.org/10.1016/j.neubiorev.2014.05.005.

[114] Mollica A, Greben R, Cyr M, Olson JA, Burke MJ. Placebo Effects and Neuromodulation: Ethical Considerations and Recommendations. Can J Neurol Sci J Can Sci Neurol 2023;50:s34–41. https://doi.org/10.1017/cjn.2023.24.

Quality in Sport

Downloads

  • PDF

Published

2026-01-03

How to Cite

1.
JANISZEWSKI, Michał, KOMOROWSKI, Marcin, PIECEK, Joanna, OMIECIŃSKA, Marta, SUROSZ, Natalia, GRACZYK, Aleksandra, GROCHOWALSKI, Michał, SZYDŁO, Jakub, ZIĘTARA, Dominika and KMIEĆ, Kacper. Vagus Nerve Stimulation in Neurology and Beyond: A Comprehensive Review of Clinical Use, Mechanisms, Innovations and Future Directions. Quality in Sport. Online. 3 January 2026. Vol. 49, p. 67248. [Accessed 10 January 2026]. DOI 10.12775/QS.2026.49.67248.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 49 (2026)

Section

Medical Sciences

License

Copyright (c) 2026 Michał Janiszewski, Marcin Komorowski, Joanna Piecek, Marta Omiecińska, Natalia Surosz, Aleksandra Graczyk, Michał Grochowalski, Jakub Szydło, Dominika Ziętara, Kacper Kmieć

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 59
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Vagus Nerve Stimulation, Biomarkers, Drug-Resistant Epilepsy, Neuroimmunomodulation, Closed-Loop Neuromodulation, Bioelectronic Medicine
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop