Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Shared Mechanisms and Differential Effects of L-Carnitine Supplementation in Athletes and Cardiometabolically Impaired Individuals
  • Home
  • /
  • Shared Mechanisms and Differential Effects of L-Carnitine Supplementation in Athletes and Cardiometabolically Impaired Individuals
  1. Home /
  2. Archives /
  3. Vol. 48 (2025) /
  4. Medical Sciences

Shared Mechanisms and Differential Effects of L-Carnitine Supplementation in Athletes and Cardiometabolically Impaired Individuals

Authors

  • Zuzanna Wadowska Stefan Zeromski Specialist Hospital ul. Osiedle Na Skarpie 66, 31-913, Krakow, Poland https://orcid.org/0009-0000-3910-7065
  • Julia Janowiak Szpital Specjalistyczny im. Stefana Żeromskiego w Krakowie https://orcid.org/0009-0007-4042-9302
  • Julia Lenart 5th Military Clinical Hospital with Outpatient Clinic SPZOZ in Cracow https://orcid.org/0009-0006-7934-2063
  • Natalia Janik 5th Military Clinical Hospital with Outpatient Clinic SPZOZ in Kraków https://orcid.org/0009-0000-3005-8076
  • Anna Górowska 5th Military Clinical Hospital with Outpatient Clinic SPZOZ in Cracow https://orcid.org/0009-0004-0211-7998
  • Martyna Sobiś CM HCP https://orcid.org/0009-0009-6854-1413
  • Anna Bogacka Jagiellonian University in Cracow https://orcid.org/0009-0003-2643-4894
  • Nina Kiersznowska Jagiellonian University Medical College, Kraków, Poland https://orcid.org/0009-0003-9101-5215
  • Małgorzata Buchman UJCM https://orcid.org/0009-0003-1445-9189
  • Barbara Miłek Uniwersytecki Szpital Kliniczny w Poznaniu https://orcid.org/0009-0007-0620-6703

DOI:

https://doi.org/10.12775/QS.2025.48.67108

Keywords

L-carnitine, fatty acid oxidation, mitochondrial function, exercise performance, cardiometabolic health, heart failure, muscle recovery, oxidative stress, supplementation, TMAO

Abstract

Introduction and purpose:

L-carnitine is a key component of mitochondrial fatty acid transport and energy metabolism. Owing to its metabolic importance, it is widely studied in the context of exercise performance and cardiometabolic disorders. This review aims to assess current evidence on its metabolic actions, effectiveness in physical performance and recovery, and its therapeutic potential in cardiovascular and metabolic diseases.

Material and methods:

A literature search was performed in PubMed, Google Scholar and ResearchGate using the keywords. Studies were analyzed for mechanisms of action, supplementation effects, clinical outcomes and safety.

Results:

L-carnitine enhances mitochondrial β-oxidation, regulates the acyl-CoA/CoA ratio and reduces oxidative stress. In athletes, chronic supplementation may increase fat oxidation during moderate-intensity exercise and reduce markers of muscle damage, but it does not significantly improve VO₂max or endurance. In individuals with metabolic disorders, L-carnitine improves insulin sensitivity, lipid profile, metabolic flexibility and cardiac function. Supplementation increases TMAO levels, although its clinical importance remains uncertain.

Conclusions:

L-carnitine shows benefits for exercise recovery and significant improvements in metabolic and cardiovascular dysfunction. Its effects vary depending on baseline metabolic status and carnitine levels. Future research should focus on standardized dosing strategies, long-term effects, and clarifying the clinical relevance of TMAO elevation.

References

Almannai, M., Alfadhel, M., & El-Hattab, A. W. (2019). Carnitine Inborn Errors of Metabolism. Molecules, 24(18), 3251. https://doi.org/10.3390/molecules24183251

Gnoni, A., Longo, S., Gnoni, G. V., & Giudetti, A. M. (2020). Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules, 25(1), 182. https://doi.org/10.3390/molecules25010182

Calvani, M., Reda, E., & Arrigoni-Martelli, E. (2000). Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Research in Cardiology, 95(2), 75–83. https://doi.org/10.1007/s003950050167

Almannai, M., Alfadhel, M., & El-Hattab, A. W. (2019). Carnitine Inborn Errors of Metabolism. Molecules, 24(18), 3251. https://doi.org/10.3390/molecules24183251

Longo, N., Frigeni, M., & Pasquali, M. (2016). Carnitine transport and fatty acid oxidation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(10), 2422–2435. https://doi.org/10.1016/j.bbamcr.2016.01.023

Virmani, M. A., & Cirulli, M. (2022). The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. International Journal of Molecular Sciences, 23(5), 2717. https://doi.org/10.3390/ijms23052717

Stephens, F. B. (2017). Does skeletal muscle carnitine availability influence fuel selection during exercise? Proceedings of the Nutrition Society, 77(1), 11–19. https://doi.org/10.1017/s0029665117003937

Wall, B. T., Stephens, F. B., Constantin‐Teodosiu, D., Marimuthu, K., Macdonald, I. A., & Greenhaff, P. L. (2011). Chronic oral ingestion of l ‐carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. The Journal of Physiology, 589(4), 963–973. https://doi.org/10.1113/jphysiol.2010.201343

Stephens, F. B., Constantin‐Teodosiu, D., & Greenhaff, P. L. (2007). New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. The Journal of Physiology, 581(2), 431–444. https://doi.org/10.1113/jphysiol.2006.125799

Gnoni, A., Longo, S., Gnoni, G. V., & Giudetti, A. M. (2020). Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules, 25(1), 182. https://doi.org/10.3390/molecules25010182

Mielgo-Ayuso, J., Pietrantonio, L., Viribay, A., Calleja-González, J., González-Bernal, J., & Fernández-Lázaro, D. (2021). Effect of Acute and Chronic Oral l-Carnitine Supplementation on Exercise Performance Based on the Exercise Intensity: A Systematic Review. Nutrients, 13(12), 4359. https://doi.org/10.3390/nu13124359

Sawicka, A. K., Renzi, G., & Olek, R. A. (2020). The bright and the dark sides of L-carnitine supplementation: a systematic review. Journal of the International Society of Sports Nutrition, 17(1). https://doi.org/10.1186/s12970-020-00377-2

Yarizadh, H., Shab-Bidar, S., Zamani, B., Vanani, A. N., Baharlooi, H., & Djafarian, K. (2020). The Effect of L-Carnitine Supplementation on Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of the American College of Nutrition, 39(5), 457–468. https://doi.org/10.1080/07315724.2019.1661804

Ho, J.-Y., Kraemer, W. J., Volek, J. S., Fragala, M. S., Thomas, G. A., Dunn-Lewis, C., Coday, M., Häkkinen, K., & Maresh, C. M. (2010). l-Carnitine l-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women. Metabolism, 59(8), 1190–1199. https://doi.org/10.1016/j.metabol.2009.11.012

Stefan, M., Sharp, M., Gheith, R., Lowery, R., Ottinger, C., Wilson, J., Durkee, S., & Bellamine, A. (2021). L-Carnitine Tartrate Supplementation for 5 Weeks Improves Exercise Recovery in Men and Women: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 13(10), 3432. https://doi.org/10.3390/nu13103432

Volek, J. S., Kraemer, W. J., Rubin, M. R., Gómez, A. L., Ratamess, N. A., & Gaynor, P. (2002). L-Carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. American Journal of Physiology-Endocrinology and Metabolism, 282(2), E474–E482. https://doi.org/10.1152/ajpendo.00277.2001

Mielgo-Ayuso, J., Pietrantonio, L., Viribay, A., Calleja-González, J., González-Bernal, J., & Fernández-Lázaro, D. (2021). Effect of Acute and Chronic Oral l-Carnitine Supplementation on Exercise Performance Based on the Exercise Intensity: A Systematic Review. Nutrients, 13(12), 4359. https://doi.org/10.3390/nu13124359

Gnoni, A., Longo, S., Gnoni, G. V., & Giudetti, A. M. (2020). Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules, 25(1), 182. https://doi.org/10.3390/molecules25010182

Fielding, R., Riede, L., Lugo, J., & Bellamine, A. (2018). l-Carnitine Supplementation in Recovery after Exercise. Nutrients, 10(3), 349. https://doi.org/10.3390/nu10030349

Stefan, M., Sharp, M., Gheith, R., Lowery, R., Ottinger, C., Wilson, J., Durkee, S., & Bellamine, A. (2021). L-Carnitine Tartrate Supplementation for 5 Weeks Improves Exercise Recovery in Men and Women: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 13(10), 3432. https://doi.org/10.3390/nu13103432

Yarizadh, H., Shab-Bidar, S., Zamani, B., Vanani, A. N., Baharlooi, H., & Djafarian, K. (2020). The Effect of L-Carnitine Supplementation on Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Journal of the American College of Nutrition, 39(5), 457–468. https://doi.org/10.1080/07315724.2019.1661804

Brass, E. P., & Hiatt, W. R. (1998). The Role of Carnitine and Carnitine Supplementation During Exercise in Man and in Individuals with Special Needs. Journal of the American College of Nutrition, 17(3), 207–215. https://doi.org/10.1080/07315724.1998.10718750

Alhasaniah, A. H. (2023). l-carnitine: Nutrition, pathology, and health benefits. Saudi Journal of Biological Sciences, 30(2), 103555. https://doi.org/10.1016/j.sjbs.2022.103555

BRASS, E. P. (2004). Carnitine and Sports Medicine: Use or Abuse? Annals of the New York Academy of Sciences, 1033(1), 67–78. https://doi.org/10.1196/annals.1320.006

Sawicka, A. K., Renzi, G., & Olek, R. A. (2020). The bright and the dark sides of L-carnitine supplementation: a systematic review. Journal of the International Society of Sports Nutrition, 17(1). https://doi.org/10.1186/s12970-020-00377-2

Gnoni, A., Longo, S., Gnoni, G. V., & Giudetti, A. M. (2020). Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules, 25(1), 182. https://doi.org/10.3390/molecules25010182

Li, Y., Xie, Y., Qiu, C., Yu, B., Yang, F., Cheng, Y., Zhong, W., & Yuan, J. (2023). Effects of l-carnitine supplementation on glucolipid metabolism: a systematic review and meta-analysis. Food & Function, 14(5), 2502–2517. https://doi.org/10.1039/d2fo02930h

Choi, M., Park, S., & Lee, M. (2020). L-Carnitine’s Effect on the Biomarkers of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 12(9), 2795. https://doi.org/10.3390/nu12092795

Op den Kamp‐Bruls, Y. M. H., Op den Kamp, Y. J. M., Veeraiah, P., Zapata Perez, R., Phielix, E., Havekes, B., Schaart, G., Kornips, E., Berendsen, B. R. B., Virmani, A., Wildberger, J. E., Houtkooper, R. H., Hesselink, M. K. C., Schrauwen, P., & Schrauwen‐Hinderling, V. B. (2025). Carnitine supplementation improves insulin sensitivity and skeletal muscle acetylcarnitine formation in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 27(5), 2864–2877. https://doi.org/10.1111/dom.16298

Asadi, M., Rahimlou, M., Shishehbor, F., & Mansoori, A. (2020). The effect of l-carnitine supplementation on lipid profile and glycaemic control in adults with cardiovascular risk factors: A systematic review and meta-analysis of randomized controlled clinical trials. Clinical Nutrition, 39(1), 110–122. https://doi.org/10.1016/j.clnu.2019.01.020

Oyanagi, E., Yano, H., Uchida, M., Utsumi, K., & Sasaki, J. (2011). Protective action of l-carnitine on cardiac mitochondrial function and structure against fatty acid stress. Biochemical and Biophysical Research Communications, 412(1), 61–67. https://doi.org/10.1016/j.bbrc.2011.07.039

Vacante, F., Senesi, P., Montesano, A., Frigerio, A., Luzi, L., & Terruzzi, I. (2018). L-Carnitine: An Antioxidant Remedy for the Survival of Cardiomyocytes under Hyperglycemic Condition. Journal of Diabetes Research, 2018, 1–12. https://doi.org/10.1155/2018/4028297

Vacante, F., Senesi, P., Montesano, A., Frigerio, A., Luzi, L., & Terruzzi, I. (2018). L-Carnitine: An Antioxidant Remedy for the Survival of Cardiomyocytes under Hyperglycemic Condition. Journal of Diabetes Research, 2018, 1–12. https://doi.org/10.1155/2018/4028297

FERRARI, R., MERLI, E., CICCHITELLI, G., MELE, D., FUCILI, A., & CECONI, C. (2004). Therapeutic Effects of l‐Carnitine and Propionyl‐l‐carnitine on Cardiovascular Diseases: A Review. Annals of the New York Academy of Sciences, 1033(1), 79–91. https://doi.org/10.1196/annals.1320.007

Song, X., Qu, H., Yang, Z., Rong, J., Cai, W., & Zhou, H. (2017). Efficacy and Safety of L-Carnitine Treatment for Chronic Heart Failure: A Meta-Analysis of Randomized Controlled Trials. BioMed Research International, 2017, 1–11. https://doi.org/10.1155/2017/6274854

DiNicolantonio, J. J., Lavie, C. J., Fares, H., Menezes, A. R., & O’Keefe, J. H. (2013). L-Carnitine in the Secondary Prevention of Cardiovascular Disease: Systematic Review and Meta-analysis. Mayo Clinic Proceedings, 88(6), 544–551. https://doi.org/10.1016/j.mayocp.2013.02.007

Colonna, P., & Iliceto, S. (2000). Myocardial infarction and left ventricular remodeling: Results of the CEDIM trial. American Heart Journal, 139(2), s124–s130. https://doi.org/10.1067/mhj.2000.103918

Song, X., Qu, H., Yang, Z., Rong, J., Cai, W., & Zhou, H. (2017). Efficacy and Safety of L-Carnitine Treatment for Chronic Heart Failure: A Meta-Analysis of Randomized Controlled Trials. BioMed Research International, 2017, 1–11. https://doi.org/10.1155/2017/6274854

DiNicolantonio, J. J., Lavie, C. J., Fares, H., Menezes, A. R., & O’Keefe, J. H. (2013). L-Carnitine in the Secondary Prevention of Cardiovascular Disease: Systematic Review and Meta-analysis. Mayo Clinic Proceedings, 88(6), 544–551. https://doi.org/10.1016/j.mayocp.2013.02.007

Ussher, J. R., Lopaschuk, G. D., & Arduini, A. (2013). Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis, 231(2), 456–461. https://doi.org/10.1016/j.atherosclerosis.2013.10.013

Ufnal, M., Zadlo, A., & Ostaszewski, R. (2015). TMAO: A small molecule of great expectations. Nutrition, 31(11–12), 1317–1323. https://doi.org/10.1016/j.nut.2015.05.006

Budoff, M. J., de Oliveira Otto, M. C., Li, X. S., Lee, Y., Wang, M., Lai, H. T. M., Lemaitre, R. N., Pratt, A., Tang, W. H. W., Psaty, B. M., Siscovick, D. S., Hazen, S. L., & Mozaffarian, D. (2025). Trimethylamine-N-oxide (TMAO) and risk of incident cardiovascular events in the multi ethnic study of Atherosclerosis. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-05903-3

Thomas, M. S., & Fernandez, M. L. (2021). Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Current Atherosclerosis Reports, 23(4). https://doi.org/10.1007/s11883-021-00910-x

Fu, B. C., Hullar, M. A., Randolph, T. W., Franke, A. A., Monroe, K. R., Cheng, I., Wilkens, L. R., Shepherd, J. A., Madeleine, M. M., Le Marchand, L., Lim, U., & Lampe, J. W. (2020). Associations of plasma trimethylamine N-oxide, choline, carnitine, and betaine with inflammatory and cardiometabolic risk biomarkers and the fecal microbiome in the Multiethnic Cohort Adiposity Phenotype Study. The American Journal of Clinical Nutrition, 111(6), 1226–1234. https://doi.org/10.1093/ajcn/nqaa015

Naghipour, S., Cox, A. J., Peart, J. N., Du Toit, E. F., & Headrick, J. P. (2020). TrimethylamineN-oxide: heart of the microbiota–CVD nexus? Nutrition Research Reviews, 34(1), 125–146. https://doi.org/10.1017/s0954422420000177

Olek, R. A., Samulak, J. J., Sawicka, A. K., Hartmane, D., Grinberga, S., Pugovics, O., & Lysiak-Szydlowska, W. (2019). Increased Trimethylamine N-Oxide Is Not Associated with Oxidative Stress Markers in Healthy Aged Women. Oxidative Medicine and Cellular Longevity, 2019, 1–6. https://doi.org/10.1155/2019/6247169

Samulak, J. J., Sawicka, A. K., Samborowska, E., & Olek, R. A. (2019). Plasma Trimethylamine-N-oxide following Cessation of L-carnitine Supplementation in Healthy Aged Women. Nutrients, 11(6), 1322. https://doi.org/10.3390/nu11061322

Hathcock, J. N., & Shao, A. (2006). Risk assessment for carnitine. Regulatory Toxicology and Pharmacology, 46(1), 23–28. https://doi.org/10.1016/j.yrtph.2006.06.007

Davani-Davari, D., Karimzadeh, I., Sagheb, M. M., & Khalili, H. (2019). The Renal Safety of L-Carnitine, L-Arginine, and Glutamine in Athletes and Bodybuilders. Journal of Renal Nutrition, 29(3), 221–234. https://doi.org/10.1053/j.jrn.2018.08.014

Askarpour, M., Djafarian, K., Ghaedi, E., Sadeghi, O., Sheikhi, A., & Shab-Bidar, S. (2020). Effect of L-Carnitine Supplementation on Liver Enzymes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Archives of Medical Research, 51(1), 82–94. https://doi.org/10.1016/j.arcmed.2019.12.005

Alhasaniah, A. H. (2023). l-carnitine: Nutrition, pathology, and health benefits. Saudi Journal of Biological Sciences, 30(2), 103555. https://doi.org/10.1016/j.sjbs.2022.103555

Marcovina, S. M., Sirtori, C., Peracino, A., Gheorghiade, M., Borum, P., Remuzzi, G., & Ardehali, H. (2013). Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine. Translational Research, 161(2), 73–84. https://doi.org/10.1016/j.trsl.2012.10.006

Virmani, M. A., & Cirulli, M. (2022). The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. International Journal of Molecular Sciences, 23(5), 2717. https://doi.org/10.3390/ijms23052717

Caballero-García, A., Noriega-González, D. C., Roche, E., Drobnic, F., & Córdova, A. (2023). Effects of L-Carnitine Intake on Exercise-Induced Muscle Damage and Oxidative Stress: A Narrative Scoping Review. Nutrients, 15(11), 2587. https://doi.org/10.3390/nu15112587

Mielgo-Ayuso, J., Pietrantonio, L., Viribay, A., Calleja-González, J., González-Bernal, J., & Fernández-Lázaro, D. (2021). Effect of Acute and Chronic Oral l-Carnitine Supplementation on Exercise Performance Based on the Exercise Intensity: A Systematic Review. Nutrients, 13(12), 4359. https://doi.org/10.3390/nu13124359

Li, Y., Xie, Y., Qiu, C., Yu, B., Yang, F., Cheng, Y., Zhong, W., & Yuan, J. (2023). Effects of l-carnitine supplementation on glucolipid metabolism: a systematic review and meta-analysis. Food & Function, 14(5), 2502–2517. https://doi.org/10.1039/d2fo02930h

Asadi, M., Rahimlou, M., Shishehbor, F., & Mansoori, A. (2020). The effect of l-carnitine supplementation on lipid profile and glycaemic control in adults with cardiovascular risk factors: A systematic review and meta-analysis of randomized controlled clinical trials. Clinical Nutrition, 39(1), 110–122. https://doi.org/10.1016/j.clnu.2019.01.020

Wang, Z.-Y., Liu, Y.-Y., Liu, G.-H., Lu, H.-B., & Mao, C.-Y. (2018). l -Carnitine and heart disease. Life Sciences, 194, 88–97. https://doi.org/10.1016/j.lfs.2017.12.015

Virmani, M. A., & Cirulli, M. (2022). The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. International Journal of Molecular Sciences, 23(5), 2717. https://doi.org/10.3390/ijms23052717

Alhasaniah, A. H. (2023). l-carnitine: Nutrition, pathology, and health benefits. Saudi Journal of Biological Sciences, 30(2), 103555. https://doi.org/10.1016/j.sjbs.2022.103555

Marcovina, S. M., Sirtori, C., Peracino, A., Gheorghiade, M., Borum, P., Remuzzi, G., & Ardehali, H. (2013). Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine. Translational Research, 161(2), 73–84. https://doi.org/10.1016/j.trsl.2012.10.006

Choi, M., Park, S., & Lee, M. (2020). L-Carnitine’s Effect on the Biomarkers of Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients, 12(9), 2795. https://doi.org/10.3390/nu12092795

Li, Y., Xie, Y., Qiu, C., Yu, B., Yang, F., Cheng, Y., Zhong, W., & Yuan, J. (2023). Effects of l-carnitine supplementation on glucolipid metabolism: a systematic review and meta-analysis. Food & Function, 14(5), 2502–2517. https://doi.org/10.1039/d2fo02930h

Gnoni, A., Longo, S., Gnoni, G. V., & Giudetti, A. M. (2020). Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules, 25(1), 182. https://doi.org/10.3390/molecules25010182

Fielding, R., Riede, L., Lugo, J., & Bellamine, A. (2018). l-Carnitine Supplementation in Recovery after Exercise. Nutrients, 10(3), 349. https://doi.org/10.3390/nu10030349

Quality in Sport

Downloads

  • PDF

Published

2025-12-26

How to Cite

1.
WADOWSKA, Zuzanna, JANOWIAK, Julia, LENART, Julia, JANIK, Natalia, GÓROWSKA, Anna, SOBIŚ, Martyna, BOGACKA, Anna, KIERSZNOWSKA, Nina, BUCHMAN, Małgorzata and MIŁEK, Barbara. Shared Mechanisms and Differential Effects of L-Carnitine Supplementation in Athletes and Cardiometabolically Impaired Individuals. Quality in Sport. Online. 26 December 2025. Vol. 48, p. 67108. [Accessed 27 December 2025]. DOI 10.12775/QS.2025.48.67108.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 48 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Zuzanna Wadowska, Julia Janowiak, Julia Lenart, Natalia Janik, Anna Górowska, Martyna Sobiś, Anna Bogacka, Nina Kiersznowska, Małgorzata Buchman, Barbara Miłek

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 11
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

L-carnitine, fatty acid oxidation, mitochondrial function, exercise performance, cardiometabolic health, heart failure, muscle recovery, oxidative stress, supplementation, TMAO
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop