Diagnostic Challenges in the Differential Diagnosis of Chronic Inflammatory Respiratory Diseases: Asthma versus Chronic Obstructive Pulmonary Disease. A literature review
DOI:
https://doi.org/10.12775/QS.2025.48.67094Keywords
Asthma, COPD, Diagnostic Challenges, Spirometry, Asthma-COPD Overlap (ACO), FeNO, Biomarkers, Peak Expiratory Flow (PEF), Questionnaire, Eosinophils, Sputum analysisAbstract
Chronic inflammatory respiratory diseases—particularly asthma and chronic obstructive pulmonary disease (COPD)—represent a significant burden on healthcare systems worldwide. More than 350 million people are affected by asthma, while COPD is the third leading cause of death globally. Despite distinct pathophysiological mechanisms, the clinical manifestations of these diseases often overlap in everyday practice, making accurate differential diagnosis challenging and predisposing to therapeutic errors. Differential diagnosis is crucial due to important differences in treatment strategies, disease progression, and clinical course. Misdiagnosis may result in inappropriate therapeutic choices, which can worsen disease outcomes and increase the risk of exacerbations and hospitalizations, whereas early detection may prevent such consequences. Spirometry remains the cornerstone of diagnosis for both asthma and COPD. However, each patient requires an individualized approach that takes into account current medications, age, comorbidities, disease duration, and smoking history. Specialists have access to a broad range of diagnostic tools for differentiation—such as FeNO, HRCT, sputum eosinophil count, questionnaire and PEF, IA but the most fundamental and valuable source of diagnostic information remains continuous patient observation, assessment of treatment response, symptom progression, and a detailed medical history obtained from the patient and their close contacts.
Conclusion
Effective differential diagnosis of asthma and COPD requires a combination of functional testing, inflammatory biomarkers, and a thorough patient history. Implementation of spirometry in primary care and broader use of biomarkers (e.g., FeNO, eosinophils) in clinical practice are recommended. In the future, prospective studies on novel biomarkers and the application of artificial intelligence may improve diagnostic accuracy and enable more personalized therapy.
References
1. GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020 Jun;8(6):585-596. doi: 10.1016/S2213-2600(20)30105-3. PMID: 32526187; PMCID: PMC7284317. https://doi.org/10.1016/s2213-2600(20)30105-3
2. Adeloye D, Song P, Zhu Y, Campbell H, Sheikh A, Rudan I; NIHR RESPIRE Global Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022 May;10(5):447-458. doi: 10.1016/S2213-2600(21)00511-7. Epub 2022 Mar 10. PMID: 35279265; PMCID: PMC9050565. https://doi.org/10.1016/s2213-2600(21)00511-7
3. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, Nair H, Gasevic D, Sridhar D, Campbell H, Chan KY, Sheikh A, Rudan I; Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health. 2015 Dec;5(2):020415. doi: 10.7189/jogh.05.020415. PMID: 26755942; PMCID: PMC4693508. https://doi.org/10.7189/jogh.05.020415
4. Barnes PJ. Against the Dutch hypothesis: asthma and chronic obstructive pulmonary disease are distinct diseases. Am J Respir Crit Care Med. 2006 Aug 1;174(3):240-3; discussion 243-4. doi: 10.1164/rccm.2604008. PMID: 16864717. https://doi.org/10.1164/rccm.2604008
5. Celli B, Fabbri L, Criner G, Martinez FJ, Mannino D, Vogelmeier C, Montes de Oca M, Papi A, Sin DD, Han MK, Agusti A. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. Am J Respir Crit Care Med. 2022 Dec 1;206(11):1317-1325. doi: 10.1164/rccm.202204-0671PP. PMID: 35914087; PMCID: PMC9746870. https://doi.org/10.1164/rccm.202204-0671pp
6. Gajewski P (red.). Interna Szczeklika 2024. Medycyna Praktyczna, Kraków 2024.
7. https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
8. Sin DD, Doiron D, Agusti A, Anzueto A, Barnes PJ, Celli BR, Criner GJ, Halpin D, Han MK, Martinez FJ, Montes de Oca M, Papi A, Pavord I, Roche N, Singh D, Stockley R, Lopez Varlera MV, Wedzicha J, Vogelmeier C, Bourbeau J; GOLD Scientific Committee. Air pollution and COPD: GOLD 2023 committee report. Eur Respir J. 2023 May 11;61(5):2202469. doi:10.1183/13993003.02469-2022. PMID: 36958741. https://doi.org/10.1183/13993003.02469-2022
9. Yang IA, Jenkins CR, Salvi SS. Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir Med. 2022 May;10(5):497-511. doi: 10.1016/S2213-2600(21)00506-3. Epub 2022 Apr 12. PMID: 35427530. https://doi.org/10.1016/s2213-2600(21)00506-3
10. Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir Med. 2022 May;10(5):485-496. doi: 10.1016/S2213-2600(21)00510-5. Epub 2022 Apr 12. PMID: 35427534; PMCID: PMC11197974. https://doi.org/10.1016/s2213-2600(21)00510-5
11. Barnes PJ. Against the Dutch hypothesis: asthma and chronic obstructive pulmonary disease are distinct diseases. Am J Respir Crit Care Med. 2006 Aug 1;174(3):240-3; discussion 243-4. doi: 10.1164/rccm.2604008. PMID: 16864717. https://doi.org/10.1164/rccm.2604008
12. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Uaktualnione 2025. http://www.goldcopd.com
13. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention. Opublikowane w styczniu 1995 (NIH Publication No. 02-3659); aktualizacja 2025. https://ginasthma.org/
14. Bel EH. Clinical phenotypes of asthma. Curr Opin Pulm Med. 2004 Jan;10(1):44-50. doi: 10.1097/00063198-200401000-00008. PMID: 14749605. https://doi.org/10.1097/00063198-200401000-00008
15. Mortimer K, Lesosky M, García-Marcos L, Asher MI, Pearce N, Ellwood E, Bissell K, El Sony A, Ellwood P, Marks GB, Martínez-Torres A, Morales E, Perez-Fernandez V, Robertson S, Rutter CE, Silverwood RJ, Strachan DP, Chiang CY; Global Asthma Network Phase I Study Group. The burden of asthma, hay fever and eczema in adults in 17 countries: GAN Phase I study. Eur Respir J. 2022 Sep 15;60(3):2102865. doi: 10.1183/13993003.02865-2021. PMID: 35210319; PMCID: PMC9474894. http://doi.org10.1183/13993003.02865-2021
16. https://www.who.int/news-room/fact-sheets/detail/asthma
17. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct 17;396(10258):1204-1222. doi: 10.1016/S0140-6736(20)30925-9. Erratum in: Lancet. 2020 Nov 14;396(10262):1562. doi: 10.1016/S0140-6736(20)32226-1. PMID: 33069326; PMCID: PMC7567026. https://doi.org/10.1016/S0140-6736(20)30925-9
18. Damps-Konstańska I, Jassem E, Niedoszytko M. NFZ o zdrowiu. Astma. Centrala Narodowego Funduszu Zdrowia, Departament Analiz i Innowacji, 2020. Online: https://ezdrowie.gov.pl/pobierz/nfz_o_zdrowiu_astma
19. Śliwczyński A, Brzozowska M, Iltchew P, Czeleko T, Kucharczyk A, Jędrzejczyk T, Jahnz-Różyk K, Marczak M. Epidemiology of asthma in Poland in urban and rural areas, based on provided health care services. Pneumonol Alergol Pol. 2015;83(3):178-87. doi: 10.5603/PiAP.2015.0029. PMID: 26050977. https://doi.org/10.5603/piap.2015.0029
20. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012 May 4;18(5):716-25. doi: 10.1038/nm.2678. PMID: 22561835. https://doi.org/10.1038/nm.2678
21. Klain A, Dinardo G, Salvatori A, Indolfi C, Contieri M, Brindisi G, Decimo F, Zicari AM, Miraglia Del Giudice M. An Overview on the Primary Factors That Contribute to Non-Allergic Asthma in Children. J Clin Med. 2022 Nov 5;11(21):6567. doi: 10.3390/jcm11216567. PMID: 36362795; PMCID: PMC9654665. https://doi.org/10.3390/jcm11216567
22. Baos S, Calzada D, Cremades-Jimeno L, Sastre J, Picado C, Quiralte J, Florido F, Lahoz C, Cárdaba B. Nonallergic Asthma and Its Severity: Biomarkers for Its Discrimination in Peripheral Samples. Front Immunol. 2018 Jun 21;9:1416. doi: 10.3389/fimmu.2018.01416. PMID: 29977241; PMCID: PMC6021512. https://doi.org/10.3389/fimmu.2018.01416
23. Jenkins C, FitzGerald JM, Martinez FJ, Postma DS, Rennard S, van der Molen T, Gardev A, Genofre E, Calverley P. Diagnosis and management of asthma, COPD and asthma-COPD overlap among primary care physicians and respiratory/allergy specialists: A global survey. Clin Respir J. 2019 Jun;13(6):355-367. doi: 10.1111/crj.13016. Epub 2019 Mar 24. PMID: 30825365. https://doi.org/10.1111/crj.13016
24. Meneghini AC, Paulino ACB, Pereira LP, Vianna EO. Accuracy of spirometry for detection of asthma: a cross-sectional study. Sao Paulo Med J. 2017 Sep-Oct;135(5):428-433. doi: 10.1590/1516-3180.2017.0041250517. PMID: 29211208; PMCID: PMC10027253. https://doi.org/10.1590/1516-3180.2017.0041250517
25. Härtel A, Peters M, Kostev K. Prevalence of Spirometry Testing among Patients with Asthma and COPD in German General Practices. Healthcare (Basel). 2022 Dec 18;10(12):2570. doi: 10.3390/healthcare10122570. PMID: 36554093; PMCID: PMC9778268. https://doi.org/10.3390/healthcare10122570
26. Çolak Y, Nordestgaard BG, Vestbo J, Lange P, Afzal S. Prognostic significance of chronic respiratory symptoms in individuals with normal spirometry. Eur Respir J. 2019 Sep 19;54(3):1900734. doi: 10.1183/13993003.00734-2019. PMID: 31248954. https://doi.org/10.1183/13993003.00734-2019
27. Bouwens, J.D.M., Bischoff, E.W.M.A., in ’t Veen, J.C.C.M. et al. Diagnostic differentiation between asthma and COPD in primary care using lung function testing. npj Prim. Care Respir. Med. 32, 32 (2022). https://doi.org/10.1038/s41533-022-00298-4
28. Hegewald MJ. Diffusing capacity. Clin Rev Allergy Immunol. 2009 Dec;37(3):159-66. doi: 10.1007/s12016-009-8125-2. Epub 2009 Mar 31. PMID: 19330553. https://doi.org/10.1007/s12016-009-8125-2
29. W Lutfi, M.F. The physiological basis and clinical significance of lung volume measurements. Multidiscip Respir Med 12, 3 (2017). https://doi.org/10.1186/s40248-017-0084-5
30. Gao Y, Liang B, Su X, Rao W, Cheng H, Fan C, Yu X, Xie Y, Shen B, Du J, Li L, Liu B. Reliability and usability of a portable spirometer compared to a laboratory spirometer. BMC Pulm Med. 2025 May 10;25(1):228. doi: 10.1186/s12890-025-03690-1. PMID: 40349062; PMCID: PMC12065281. https://doi.org/10.1186/s12890-025-03690-1
31. Xiao S, Wu F, Wang Z, Chen J, Yang H, Zheng Y, Deng Z, Peng J, Wen X, Huang P, Dai C, Lu L, Zhao N, Ran P, Zhou Y. Validity of a portable spirometer in the communities of China. BMC Pulm Med. 2022 Mar 5;22(1):80. doi: 10.1186/s12890-022-01872-9. PMID: 35248001; PMCID: PMC8898436. https://doi.org/10.1186/s12890-022-01872-9
32. Watz H, Tetzlaff K, Magnussen H, Mueller A, Rodriguez-Roisin R, Wouters E, et al. Spirometric changes during exacerbations of COPD: a post hoc analysis of the WISDOM trial. Respir Res 2018; 19:251doi: 10.1186/s12931-018-0944-3. https://doi.org/10.1186/s12931-018-0944-3
33. Tupper, O. D., Gregersen, T. L., Ringbaek, T., Brøndum, E., Frausing, E., Green, A., & Ulrik, C. S. (2018). Effect of tele–health care on quality of life in patients with severe COPD: a randomized clinical trial. International journal of chronic obstructive pulmonary disease, 2657-2662. https://doi.org/10.2147/COPD.S164121
34. Achelrod, D., Schreyögg, J., & Stargardt, T. (2017). Health-economic evaluation of home telemonitoring for COPD in Germany: evidence from a large population-based cohort. The European Journal of Health Economics, 18(7), 869-882. https://doi.org/10.1007/s10198-016-0834-x
35. W Zhang TY, He YD, Chen KQ, Zhao Y, Zhao YX, Xu KF. Home-based spirometry in the self-management of chronic obstructive pulmonary disease. Chin Med J (Engl). 2021 Apr 13;134(15):1789-1791. doi: 10.1097/CM9.0000000000001468. PMID: 34397583; PMCID: PMC8367051. https://doi.org/10.1097/cm9.0000000000001468
36. Oppenheimer J, Hanania NA, Chaudhuri R, Sagara H, Bailes Z, Fowler A, Peachey G, Pizzichini E, Slade D. Clinic vs Home Spirometry for Monitoring Lung Function in Patients With Asthma. Chest. 2023 Nov;164(5):1087-1096. doi: 10.1016/j.chest.2023.06.029. Epub 2023 Jun 27. PMID: 37385337. https://doi.org/10.1016/j.chest.2023.06.029
37. Okazawa M, Imaizumi K, Mieno Y, Takahashi H, Paré PD. Ratio of Maximal Inspiratory to Expiratory Flow Aids in the Separation of COPD from Asthma. COPD. 2020 Jun;17(3):230-239. doi: 10.1080/15412555.2020.1742679. Epub 2020 Apr 1. PMID: 32237910. https://doi.org/10.1080/15412555.2020.1742679
38. National Institute for Health and Care Excellence. (2024). Asthma: diagnosis and management (NICE Guideline NG245).https://www.nice.org.uk/guidance/ng245
39. Mahboub B, Alzaabi A, Soriano JB, Salameh L, Mutairi YA, Yusufali AA, Alsheikh-ali A, Almahmeed W, Haughney J. Case-finding of chronic obstructive pulmonary disease with questionnaire, peak flow measurements and spirometry: a cross-sectional study. BMC Res Notes. 2014 Apr 16;7:241. doi: 10.1186/1756-0500-7-241. PMID: 24739210; PMCID: PMC3996099. https://doi.org/10.1186/1756-0500-7-241
40. Martinez FJ, Mannino D, Leidy NK, Malley KG, Bacci ED, Barr RG, Bowler RP, Han MK, Houfek JF, Make B, Meldrum CA, Rennard S, Thomashow B, Walsh J, Yawn BP; High-Risk-COPD Screening Study Group *. A New Approach for Identifying Patients with Undiagnosed Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2017 Mar 15;195(6):748-756. doi: 10.1164/rccm.201603-0622OC. Erratum in: Am J Respir Crit Care Med. 2025 Apr;211(4):664. doi: 10.1164/rccm.v211erratum2. PMID: 27783539; PMCID: PMC5363964. https://doi.org/10.1164/rccm.201603-0622oc
41. Halpin DMG, Meltzer EO, Pisternick-Ruf W, Moroni-Zentgraf P, Engel M, Zaremba-Pechmann L, Casale T, FitzGerald JM. Peak expiratory flow as an endpoint for clinical trials in asthma: a comparison with FEV1. Respir Res. 2019 Jul 18;20(1):159. doi: 10.1186/s12931-019-1119-6. PMID: 31319851; PMCID: PMC6637596. https://doi.org/10.1186/s12931-019-1119-6
42. Lozano-Forero A, Tuta-Quintero E, Bastidas AR, Pacheco B, Cordero J, Faizal K, Molina M, Méndez I, Cardona A, Navarro N, Bonilla G, Franco M, Samboní J, Hoz J, Doumat G, Portilla D, Eljach H. CAD-Q (COPD-Asthma Differentiation Questionnaire): Performance of a new diagnostic score to differentiate between COPD and asthma in adults. BMC Pulm Med. 2025 Jan 15;25(1):20. doi: 10.1186/s12890-025-03492-5. PMID: 39815228; PMCID: PMC11734519. https://doi.org/10.1186/s12890-025-03492-5
43. Schnieders E, Ünal E, Winkler V, Dambach P, Louis VR, Horstick O, Neuhann F, Deckert A. Performance of alternative COPD case-finding tools: a systematic review and meta-analysis. Eur Respir Rev. 2021 May 25;30(160):200350. doi: 10.1183/16000617.0350-2020. PMID: 34039672; PMCID: PMC9488779. https://doi.org/10.1183/16000617.0350-2020
44. Thorat YT, Salvi SS, Kodgule RR. Peak flow meter with a questionnaire and mini-spirometer to help detect asthma and COPD in real-life clinical practice: a cross-sectional study. NPJ Prim Care Respir Med. 2017 May 9;27(1):32. doi: 10.1038/s41533-017-0036-8. PMID: 28487516; PMCID: PMC5435090. https://doi.org/10.1038/s41533-017-0036-8
45. Martinez FJ, Han MK, Lopez C, Murray S, Mannino D, Anderson S, Brown R, Dolor R, Elder N, Joo M, Khan I, Knox LM, Meldrum C, Peters E, Spino C, Tapp H, Thomashow B, Zittleman L, Make B, Yawn BP; CAPTURE Study Group. Discriminative Accuracy of the CAPTURE Tool for Identifying Chronic Obstructive Pulmonary Disease in US Primary Care Settings. JAMA. 2023 Feb 14;329(6):490-501. doi: 10.1001/jama.2023.0128. PMID: 36786790; PMCID: PMC9929696. https://doi.org/10.1001/jama.2023.0128
46. Kocks JWH, Cao H, Holzhauer B, Kaplan A, FitzGerald JM, Kostikas K, Price D, Reddel HK, Tsiligianni I, Vogelmeier CF, Bostel S, Mastoridis P. Diagnostic Performance of a Machine Learning Algorithm (Asthma/Chronic Obstructive Pulmonary Disease [COPD] Differentiation Classification) Tool Versus Primary Care Physicians and Pulmonologists in Asthma, COPD, and Asthma/COPD Overlap. J Allergy Clin Immunol Pract. 2023 May;11(5):1463-1474.e3. doi: 10.1016/j.jaip.2023.01.017. Epub 2023 Jan 28. PMID: 36716998. https://doi.org/10.1016/j.jaip.2023.01.017
47. Dey S, Eapen MS, Chia C, Gaikwad AV, Wark PAB, Sohal SS. Pathogenesis, clinical features of asthma COPD overlap, and therapeutic modalities. Am J Physiol Lung Cell Mol Physiol. 2022 Jan 1;322(1):L64-L83. doi: 10.1152/ajplung.00121.2021. Epub 2021 Oct 20. PMID: 34668439. https://doi.org/10.1152/ajplung.00121.2021
48. Zeng GS, Chen H, Chen LC, Wu LL, Yu HP. Clinical implications of concentration of alveolar nitric oxide in asthmatic and non-asthmatic subacute cough. J Breath Res. 2021 Nov 25;16(1). doi: 10.1088/1752-7163/ac361b. PMID: 34731845. https://doi.org/10.1088/1752-7163/ac361b
49. Högman M, Palm A, Sulku J, Ställberg B, Lisspers K, Bröms K, Janson C, Malinovschi A. Alveolar Nitric Oxide in Chronic Obstructive Pulmonary Disease-A Two-Year Follow-Up. Biomedicines. 2022 Sep 7;10(9):2212. doi: 10.3390/biomedicines10092212. PMID: 36140313; PMCID: PMC9496546. https://doi.org/10.3390/biomedicines10092212
50. Zeng G, Xu J, Zeng H, Wang C, Chen L, Yu H. Differential Clinical Significance of FENO200 and CANO in Asthma, Chronic Obstructive Pulmonary Disease (COPD), and Asthma-COPD Overlap (ACO). J Asthma Allergy. 2024 Nov 12;17:1151-1161. doi: 10.2147/JAA.S486324. PMID: 39558968; PMCID: PMC11570527. https://doi.org/10.2147/jaa.s486324
51. Högman M, Pham-Ngoc H, Nguyen-Duy B, Ellingsen J, Hua-Huy T, Van Nguyen D, Dinh-Xuan AT. Measuring exhaled nitric oxide in COPD: from theoretical consideration to practical views. Expert Rev Respir Med. 2024 Dec;18(12):1013-1024. doi: 10.1080/17476348.2024.2433537. Epub 2024 Nov 25. PMID: 39587387. https://doi.org/10.1080/17476348.2024.2433537
52. Gao J, Zhang M, Zhou L, Yang X, Wu H, Zhang J, Wu F. Correlation between fractional exhaled nitric oxide and sputum eosinophilia in exacerbations of COPD. Int J Chron Obstruct Pulmon Dis. 2017 Apr 27;12:1287-1293. doi: 10.2147/COPD.S134998. PMID: 28490872; PMCID: PMC5413534. https://doi.org/10.2147/copd.s134998
53. Tang B, Huang D, Wang J, Luo LL, Li QG. Relationship of Blood Eosinophils with Fractional Exhaled Nitric Oxide and Pulmonary Function Parameters in Chronic Obstructive Pulmonary Disease (COPD) Exacerbation. Med Sci Monit. 2020 Mar 12;26:e921182. doi: 10.12659/MSM.921182. PMID: 32161254; PMCID: PMC7083088. https://doi.org/10.12659/msm.921182
54. Huang X, Tan X, Liang Y, Hou C, Qu D, Li M, Huang Q. Differential DAMP release was observed in the sputum of COPD, asthma and asthma-COPD overlap (ACO) patients. Sci Rep. 2019 Dec 17;9(1):19241. doi: 10.1038/s41598-019-55502-2. PMID: 31848359; PMCID: PMC6917785.
55. Correnti S, Preianò M, Gamboni F, Stephenson D, Pelaia C, Pelaia G, Savino R, D'Alessandro A, Terracciano R. An integrated metabo-lipidomics profile of induced sputum for the identification of novel biomarkers in the differential diagnosis of asthma and COPD. J Transl Med. 2024 Mar 23;22(1):301. doi: 10.1186/s12967-024-05100-2. Erratum in: J Transl Med. 2024 Apr 5;22(1):334. doi: 10.1186/s12967-024-05139-1. PMID: 38521955; PMCID: PMC10960495. https://doi.org/10.1186/s12967-024-05100-2
56. Gao J, Zhou W, Chen B, Lin W, Wu S, Wu F. Sputum cell count: biomarkers in the differentiation of asthma, COPD and asthma-COPD overlap. Int J Chron Obstruct Pulmon Dis. 2017 Sep 11;12:2703-2710. doi: 10.2147/COPD.S142466. PMID: 28979112; PMCID: PMC5602440. https://doi.org/10.2147/copd.s142466
57. Vanetti M, Visca D, Ardesi F, Zappa M, Pignatti P, Spanevello A. Eosinophils in chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2025 Jan-Dec;19:17534666251335800. doi: 10.1177/17534666251335800. Epub 2025 May 28. PMID: 40434001; PMCID: PMC12120306. https://doi.org/10.1177/17534666251335800
58. Hastie AT, Martinez FJ, Curtis JL, Doerschuk CM, Hansel NN, Christenson S, Putcha N, Ortega VE, Li X, Barr RG, Carretta EE, Couper DJ, Cooper CB, Hoffman EA, Kanner RE, Kleerup E, O'Neal WK, Paine R 3rd, Peters SP, Alexis NE, Woodruff PG, Han MK, Meyers DA, Bleecker ER; SPIROMICS investigators. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017 Dec;5(12):956-967. doi: 10.1016/S2213-2600(17)30432-0. Epub 2017 Nov 13. PMID: 29146301; PMCID: PMC5849066. https://doi.org/10.1016/s2213-2600(17)30432-0
59. Babu A, Narayanswamy H, Baburao A. Sputum Neutrophil Gelatinase-Associated Lipocalin as a Biomarker in Asthma-COPD Overlap. J Assoc Physicians India. 2023 Sep;71(9):34-38. doi: 10.59556/japi.71.0320. PMID: 38700299. https://doi.org/10.59556/japi.71.0320
60. Tanabe N, Matsumoto H, Morimoto C, Hayashi Y, Sakamoto R, Oguma T, Nagasaki T, Sunadome H, Sato A, Sato S, Ohashi K, Tsukahara T, Hirai T. Mucus plugging on computed tomography and the sputum microbiome in patients with asthma, chronic obstructive pulmonary disease, and asthma-COPD overlap. Allergol Int. 2024 Oct;73(4):515-523. doi: 10.1016/j.alit.2024.05.004. Epub 2024 Jul 16. PMID: 39013753. https://doi.org/10.1016/j.alit.2024.05.004
61. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008 May;38(5):709-50. doi: 10.1111/j.1365-2222.2008.02958.x. Epub 2008 Apr 1. PMID: 18384431. https://doi.org/10.1111/j.1365-2222.2008.02958.x
62. Sugawara R, Lee EJ, Jang MS, Jeun EJ, Hong CP, Kim JH, Park A, Yun CH, Hong SW, Kim YM, Seoh JY, Jung Y, Surh CD, Miyasaka M, Yang BG, Jang MH. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J Exp Med. 2016 Apr 4;213(4):555-67. doi: 10.1084/jem.20141388. Epub 2016 Mar 7. PMID: 26951334; PMCID: PMC4821642. https://doi.org/10.1084/jem.20141388
63. Marichal T, Mesnil C, Bureau F. Homeostatic Eosinophils: Characteristics and Functions. Front Med (Lausanne). 2017 Jul 11;4:101. doi: 10.3389/fmed.2017.00101. PMID: 28744457; PMCID: PMC5504169. https://doi.org/10.3389/fmed.2017.00101
64. Celli BR, Criner GJ. Using the Peripheral Blood Eosinophil Count to Manage Patients with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc. 2019 Mar;16(3):301-303. doi: 10.1513/AnnalsATS.201810-729PS. PMID: 30620613. https://doi.org/10.1513/annalsats.201810-729ps
65. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, Ferguson GT, Busse WW, Barker P, Sproule S, Gilmartin G, Werkström V, Aurivillius M, Goldman M; CALIMA study investigators. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016 Oct 29;388(10056):2128-2141. doi: 10.1016/S0140-6736(16)31322-8. Epub 2016 Sep 5. PMID: 27609406. https://doi.org/10.1016/s0140-6736(16)31322-8
66. Lipson DA, Crim C, Criner GJ, Day NC, Dransfield MT, Halpin DMG, Han MK, Jones CE, Kilbride S, Lange P, Lomas DA, Lettis S, Manchester P, Martin N, Midwinter D, Morris A, Pascoe SJ, Singh D, Wise RA, Martinez FJ. Reduction in All-Cause Mortality with Fluticasone Furoate/Umeclidinium/Vilanterol in Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2020 Jun 15;201(12):1508-1516. doi: 10.1164/rccm.201911-2207OC. PMID: 32162970; PMCID: PMC7301738. https://doi.org/10.1164/rccm.201911-2207oc
67. Cabrera López C, Sánchez Santos A, Lemes Castellano A, Cazorla Rivero S, Breña Atienza J, González Dávila E, Celli B, Casanova Macario C. Eosinophil Subtypes in Adults with Asthma and Adults with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2023 Jul 15;208(2):155-162. doi: 10.1164/rccm.202301-0149OC. PMID: 37071848. https://doi.org/10.1164/rccm.202301-0149oc
68. Yang QF, Lu TT, Shu CM, Feng LF, Chang HT, Ji QY. Eosinophilic biomarkers for detection of acute exacerbation of chronic obstructive pulmonary disease with or without pulmonary embolism. Exp Ther Med. 2017 Oct;14(4):3198-3206. doi: 10.3892/etm.2017.4876. Epub 2017 Aug 2. PMID: 28912870; PMCID: PMC5585757. https://doi.org/10.3892/etm.2017.4876
69. Makiya MA, Herrick JA, Khoury P, Prussin CP, Nutman TB, Klion AD. Development of a suspension array assay in multiplex for the simultaneous measurement of serum levels of four eosinophil granule proteins. J Immunol Methods. 2014 Sep;411:11-22. doi: 10.1016/j.jim.2014.05.020. Epub 2014 Jun 8. PMID: 24914990; PMCID: PMC4171350. https://doi.org/10.1016/j.jim.2014.05.020
70. Dudurych I, Muiser S, McVeigh N, Kerstjens HAM, van den Berge M, de Bruijne M, Vliegenthart R. Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations: a systematic review and meta-analysis. Eur Radiol. 2022 Aug;32(8):5308-5318. doi: 10.1007/s00330-022-08600-1. Epub 2022 Feb 22. PMID: 35192013; PMCID: PMC9279249. https://doi.org/10.1007/s00330-022-08600-1
71. Dudurych I, Pelgrim GJ, Sidorenkov G, Garcia-Uceda A, Petersen J, Slebos DJ, de Bock GH, van den Berge M, de Bruijne M, Vliegenthart R. Low-Dose CT-derived Bronchial Parameters in Individuals with Healthy Lungs. Radiology. 2024 Jun;311(3):e232677. doi: 10.1148/radiol.232677. PMID: 38916504. https://doi.org/10.1148/radiol.232677
72. Moslemi A, Kontogianni K, Brock J, Wood S, Herth F, Kirby M. Differentiating COPD and asthma using quantitative CT imaging and machine learning. Eur Respir J. 2022 Sep 22;60(3):2103078. doi: 10.1183/13993003.03078-2021. PMID: 35210316. https://doi.org/10.1183/13993003.03078-2021
73. Liang J, Xia T, Wu S, Liu S, Guan Y. Application research on asthma-COPD overlap using low-dose CT scan and quantitative analysis. Clin Radiol. 2024 Dec;79(12):e1473-e1480. doi: 10.1016/j.crad.2024.09.005. Epub 2024 Sep 16. PMID: 39384459.
74. Kirby M, Tanabe N, Tan WC, Zhou G, Obeidat M, Hague CJ, Leipsic J, Bourbeau J, Sin DD, Hogg JC, Coxson HO; CanCOLD Collaborative Research Group; Canadian Respiratory Research Network; CanCOLD Collaborative Research Group, the Canadian Respiratory Research Network. Total Airway Count on Computed Tomography and the Risk of Chronic Obstructive Pulmonary Disease Progression. Findings from a Population-based Study. Am J Respir Crit Care Med. 2018 Jan 1;197(1):56-65. doi: 10.1164/rccm.201704-0692OC. PMID: 28886252. https://doi.org/10.1164/rccm.201704-0692oc
75. Kaplan A, Cao H, FitzGerald JM, Iannotti N, Yang E, Kocks JWH, Kostikas K, Price D, Reddel HK, Tsiligianni I, Vogelmeier CF, Pfister P, Mastoridis P. Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis. J Allergy Clin Immunol Pract. 2021 Jun;9(6):2255-2261. doi: 10.1016/j.jaip.2021.02.014. Epub 2021 Feb 19. PMID: 33618053. https://doi.org/10.1016/j.jaip.2021.02.014
76. Joumaa H, Sigogne R, Maravic M, Perray L, Bourdin A, Roche N. Artificial intelligence to differentiate asthma from COPD in medico-administrative databases. BMC Pulm Med. 2022 Sep 20;22(1):357. doi: 10.1186/s12890-022-02144-2. PMID: 36127649; PMCID: PMC9487098. https://doi.org/10.1186/s12890-022-02144-2
77. Chen Z, Hao J, Sun H, Li M, Zhang Y, Qian Q. Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review. BMC Med Inform Decis Mak. 2025 Feb 13;25(1):77. doi: 10.1186/s12911-025-02870-7. PMID: 39948530; PMCID: PMC11823091. https://doi.org/10.1186/s12911-025-02870-7
78. Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics-methods and applications. Anal Bioanal Chem. 2021 Oct;413(24):5927-5948. doi: 10.1007/s00216-021-03425-1. Epub 2021 Jun 18. PMID: 34142202; PMCID: PMC8440309. https://doi.org/10.1007/s00216-021-03425-1
79. Meyer N, Akdis CA. Vascular endothelial growth factor as a key inducer of angiogenesis in the asthmatic airways. Curr Allergy Asthma Rep. 2013 Feb;13(1):1-9. doi: 10.1007/s11882-012-0317-9. PMID: 23076420. https://doi.org/10.1007/s11882-012-0317-9
80. Farid Hosseini R, Jabbari Azad F, Yousefzadeh H, Rafatpanah H, Hafizi S, Tehrani H, Khani M. Serum levels of vascular endothelial growth factor in chronic obstructive pulmonary disease. Med J Islam Repub Iran. 2014 Aug 2;28:85. PMID: 25664286; PMCID: PMC4301221. https://pubmed.ncbi.nlm.nih.gov/25664286/
81. Lv C, Huang Y, Yan R, Gao Y. Vascular endothelial growth factor induces the migration of human airway smooth muscle cells by activating the RhoA/ROCK pathway. BMC Pulm Med. 2023 Dec 13;23(1):505. doi: 10.1186/s12890-023-02803-y. PMID: 38093231; PMCID: PMC10720058. https://doi.org/10.1186/s12890-023-02803-y
82. Hu L, Li L, Yan C, Cao Y, Duan X, Sun J. Baicalin Inhibits Airway Smooth Muscle Cells Proliferation through the RAS Signaling Pathway in Murine Asthmatic Airway Remodeling Model. Oxid Med Cell Longev. 2023 Feb 13;2023:4144138. doi: 10.1155/2023/4144138. PMID: 36814956; PMCID: PMC9940961. https://doi.org/10.1155/2023/4144138
83. Wang H, Yao H, Yi B, Kazama K, Liu Y, Deshpande D, Zhang J, Sun J. MicroRNA-638 inhibits human airway smooth muscle cell proliferation and migration through targeting cyclin D1 and NOR1. J Cell Physiol. 2018 Jan;234(1):369-381. doi: 10.1002/jcp.26930. Epub 2018 Aug 4. PMID: 30076719; PMCID: PMC6202131. https://doi.org/10.1002/jcp.26930
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Konrad Gawin, Wiktoria Zawiślak, Anita Ignasiak, Michał Cisowski , Maria Dąbrowska, Kacper Rychlica, Jolanta Cholewińska-Rychlica , Paulina Madura, Daria Mrozik-Gałecka

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 5
Number of citations: 0