Comprehensive prosthetic treatment of a patient after removal of an impacted fragment of an orthodontic wire in the area of tooth 13 – review & case report
DOI:
https://doi.org/10.12775/QS.2025.48.66866Keywords
impacted canine, orthodontic wire fragment, prosthetic rehabilitation, metal-ceramic bridge, temporary bridge, alveolar bone defect, interdisciplinary dental treatmentAbstract
Impacted maxillary canines occur in approximately 1–4% of the population and are a significant clinical challenge due to their aesthetic and functional importance. Impacted canines are more common in women and significantly more common in the maxilla, as confirmed by epidemiological data. The causes of tooth 13 impaction can be complex and include lack of space in the arch, abnormal position of the tooth bud, retention of the deciduous tooth, and genetic factors. Modern prosthetics increasingly requires interdisciplinary cooperation, and orthodontic appliances left in the bone can be a source of potential inflammatory and mechanical complications. Their removal is a key step before performing the final prosthetic reconstruction. In the presented case, it was necessary to surgically decompress and remove the retained fragment of orthodontic wire, followed by prosthetic restoration using a temporary bridge to shape the tissues and a final metal-porcelain restoration covering teeth 15–21.
References
1. Bishara SE Impacted maxillary canines: a review. Am J Orthod Dentofacial Orthop. 1992 Feb;101(2):159-71. DOI: 10.1016/0889-5406(92)70008-X
2. Ericson S, Kurol J. Early treatment of palatally erupting maxillary canines by extraction of the primary canines. Eur J Orthod. 1988 Nov;10(4):283-95. DOI: 10.1093/ejo/10.4.283
3. Chirurgia Stomatologiczna, Chiapasco M, wyd. 3, Edra Urban & Partner, Wrocław 2020
4. Chirurgia Szczękowo - Twarzowa, Kryst L, wyd. 5, PZWL, Warszawa 2011
5. Podstawy Chirurgii Stomatologicznej, Dominiak M, Gedrange T, Rahnama M, wyd. 3, Edra Urban & Partner, Wrocław 2022
6. Vademecum wykonywania protez stałych i ruchomych, red. Dejak B, wyd. 2, Med Tour Press, Otwock 2020
7. Schoenbaum TR. Dentistry in the digital age: an update. Dent Today. 2012; 31(2):108. 10–13
8. Dawood A, Purkayastha S, Patel S, MacKillop F, Tanner S. Microtechnologies in implant and restorative dentistry: a stroll through a digital dental landscape. Proc Inst Mech Eng H. 2010;224(6):789–96. DOI: 10.1243/09544119JEIM660
9. Fasbinder DJ. Digital dentistry: innovation for restorative treatment. Comp Cont Educ Dent. 2010;31 Spec No 4:2–11. quiz 2
10. Francisconi LF, Scaffa PM, de Barros VR, Coutinho M, Francisconi PA: Glass ionomer cements and their role in the restoration of non-carious cervical lesions. J Appl Oral Sci 2009; 17(5): 364-369. doi: 10.1590/s1678- 77572009000500003
11. Krämer N, Schmidt M, Lücker S, Domann E, Frankenberger R: Glass ionomer cement inhibits secondary caries in an in vitro biofilm model. Clin Oral Investig 2018; 22(2): 1019- 1031. doi: 10.1007/s00784-017-2184-1
12. Bahsi E, Sagmak S, Dayi B, Cellik O, Akkus Z: The evaluation of microleakage and fluoride release of different types of glass ionomer cements. Niger J Clin Pract 2019; 22(7): 961- 970. doi: 10.4103/njcp.njcp_644_18
13. Brito CR, Velasco LG, Bonini GA, Imparato JC, Raggio DP: Glass ionomer cement hardness after different materials for surface protection. J Biomed Mater Res A 2010; 93(1): 243-246. doi: 10.1002/jbm.a.32524
14. Pameijer CH: A review of luting agents. Int J Dent 2012; 2012: 752861. doi: 10.1155/2012/752861
15. Sailer I, Strasding M, Valente NA, Zwahlen M, Liu S, Pjetursson BE, 2018. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin. Oral Implant Res. 29 (Suppl 16), 184–198. DOI: 10.1111/clr.13306
16. Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS, 2015. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs [published correction appears in Dent Mater. 2015 Jan, 33(1), pp. e48–e51]. Dent. Mater. 31, 624–639. DOI: 10.1016/j.dental.2015.02.013
17. Anwar M., Tripathi A, Kar SK, Sekhar KC, 2015. Effect of PFM firing cycles on the mechanical properties, phase composition, and microstructure of nickel-chromium alloy. J. Prosthodont. 24, 634–641. DOI: 10.1111/jopr.12328
18. Alhraki H, AlGhabra Y, Kammasha A, Alharran, Yousfan A: Dental Bridge Aspiration in the Left Main Stem Bronchus in an Adult Male: A Rare Case Report With Brief Literature Review, Ear, Nose & Throat JournalOnlineFirst, The Author(s) 2025, Article Reuse Guidelines. doi: 10.1177/01455613251355141
19. Nesse H, Ulstein DM, Vaage MM, Øilo M. Internal and marginal fit of cobaltchromium fixed dental prostheses fabricated with 3 different techniques. J Prosthet Dent. 2015;114:686–92. DOI: 10.1016/j.prosdent.2015.05.007
20. Lee DH, Hanawa T, Jang SH, Lee HJ, Hong MH, Min BK, et al. Effect of postsintering conditions on the Mechanical properties of a New Co-cr Alloy produced by New Subtractive Manufacturing. J Nanosci Nanotechnol. 2019;19:2395–8
21. Zeng L, Zhang Y, Liu Z, Wei B. Effects of repeated firing on the marginal accuracy of co-cr copings fabricated by selective laser melting. J Prosthet Dent. 2015;113:135–9. DOI: 10.1166/jnn.2019.15984
22. Kassapidou M, Stenport VF, Johansson CB, Syverud M, Johansson PH, Börjesson J, Hjalmarsson L. Cobalt chromium alloys in fixed prosthodontics: investigations of mechanical properties and microstructure. J Prosthet Dent. 2023;130(2):255. e251-255. e210. DOI: 10.1016/j.prosdent.2023.05.005
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Natalia Tarczyńska, Szymon Górski, Joanna Okupniarek, Michalina Bartosik

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 70
Number of citations: 0