Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Tumors and the immune system – reciprocal interaction
  • Home
  • /
  • Tumors and the immune system – reciprocal interaction
  1. Home /
  2. Archives /
  3. Vol. 47 (2025) /
  4. Medical Sciences

Tumors and the immune system – reciprocal interaction

Authors

  • Julia Florek Uniwersytet Rzeszowski, Kolegium Nauk Medycznych, al. Tadeusza Rejtana 16C, 35-959 Rzeszów https://orcid.org/0009-0009-8992-8641
  • Marcin Miczek Independent Researcher, Rzeszów, Poland https://orcid.org/0009-0009-4848-4597
  • Patrycja Dębska Uniwersytet Rzeszowski https://orcid.org/0009-0005-8676-6078
  • Adrian Groele Uniwersytet Rzeszowski https://orcid.org/0009-0001-1723-9152
  • Sara Śmiałek https://orcid.org/0009-0007-5842-9204
  • Natalia Guzik https://orcid.org/0009-0000-8727-604X
  • Dominik Jaklik https://orcid.org/0009-0002-2764-4749
  • Dominika Cholewa https://orcid.org/0009-0007-2751-4879
  • Radosław Starzyk https://orcid.org/0009-0004-5314-5411
  • Wiktor Słaby https://orcid.org/0009-0000-4583-1439

DOI:

https://doi.org/10.12775/QS.2025.47.66827

Keywords

carcinogenesis, tumor immunoediting, combination therapy

Abstract

Background. Tumor formation is a multi-stage process influenced by the complex reciprocal interaction between cancer cells and the host's immune system. This relationship is described by the concept of immunoediting, consisting of elimination, equilibrium, and escape phases. Paradoxically, while the immune system can destroy cancer cells, chronic inflammation and immunosuppressive mechanisms (e.g., Treg activity, myeloid-derived suppressor cells) can promote tumorigenesis and metastasis. Aim. The aim of this study is to review current knowledge regarding the mechanisms of immune evasion by tumors and to evaluate the efficacy of various immunotherapy strategies, including active, passive, adoptive, and combination therapies. Material and methods. A comprehensive review of scientific literature was conducted using PubMed, Scopus, and Google Scholar databases. The analysis included original and review articles published primarily between 2000 and 2025, focusing on keywords such as carcinogenesis, tumor immunoediting, checkpoint inhibitors, and combination therapy. Results. The immune system plays a dual role in cancer development. Tumor cells employ mechanisms like MHC class I downregulation and expression of checkpoint molecules (PD-L1, CTLA-4) to evade immune surveillance. Modern immunotherapy, particularly checkpoint inhibitors (e.g., nivolumab, pembrolizumab) and adoptive cell transfer (CAR-T), has revolutionized oncology. Recent data also highlight the potential of combination therapies—pairing immunotherapy with chemotherapy, radiotherapy, or targeted therapy—to overcome resistance. Furthermore, the gut microbiota has emerged as a crucial factor modulating the response to immunotherapy. Conclusions. Immunotherapy represents a pillar of modern oncology. However, the heterogeneity of tumor microenvironments necessitates personalized approaches.

References

1. Golab J, Jakobisiak M, Lasek W, Stoklosa T. Immunology. Warsaw: Polish Scientific Publishers PWN; 2008.

2. Mucha J, Motyl T, Krol M. The role of T lymphocytes and myeloid-derived suppressor cells in inhibition of anti-tumor immune response. Med Weter. 2016;72(12):735-739.

3. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208-220.

4. Kiefer JD. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site. Immunol Rev. 2016;270:178-192.

5. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164:1233-1247.

6. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549-555.

7. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14:399-416.

8. Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224-2234.

9. Ng TH, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol. 2013;4:129.

10. McIntire RH, Morales PJ, Petroff MG, Colonna M, Hunt JS. Recombinant HLA-G5 and -G6 drive U937 myelomonocytic cell production of TGF-β1. J Leukoc Biol. 2004;76:1220-1228.

11. Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28:546-558.

12. Shojaei F, Zhong C, Wu X, Yu L, Ferrara N. Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol. 2008;18:372-378.

13. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52-67.

14. O’Sullivan T, Saddawi-Konefka R, Vermi W, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 2012;209:1869-1882.

15. Ma J, Liu J, Che G, Yu N, Dai F, You Z. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 2010;10:112.

16. Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN. Cancer Cell. 2009;16:183-194.

17. Jamieson T, Clarke M, Steele CW, et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest. 2012;122:3127-3144.

18. Gong L, Cumpian AM, Caetano MS, et al. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol Cancer. 2013;12:154.

19. Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71:4179-4194.

20. Marcus A, Gowen BG, Thompson TW, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91-128.

21. Coca S, Perez-Piqueras J, Martinez D, et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 1997;79:2320-2328.

22. Liu XV, Ho SS, Tan JJ, Kamran N, Gasser S. Ras activation induces expression of Raet1 family NK receptor ligands. J Immunol. 2012;189:1826-1834.

23. Guerra N, Tan YX, Joncker NT, et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity. 2008;28:571-580.

24. Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482:400-404.

25. Jakobsiak M. Tumor immunology. In: Golab J, Jakobisiak M, Lasek W, Stoklosa T, editors. Immunology. Warsaw: PWN; 2007. p. 253-254.

26. Domagala-Kulawik J, Droszcz P, Kraszewska I, Chazan R. Expression of Fas antigen in the cells from bronchoalveolar lavage fluid (BALF). Folia Histochem Cytobiol. 2000;38:185-188.

27. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883-899.

28. Jakobsiak M. Regulation of immune response, immunological memory. In: Golab J, Jakobisiak M, Lasek W, Stoklosa T, editors. Immunology. Warsaw: PWN; 2007. p. 253-254.

29. Hanagiri T, Shigematsu Y, Shinohara S, et al. Clinical significance of the frequency of regulatory T cells in regional lymph node lymphocytes as a prognostic factor for non-small-cell lung cancer. Lung Cancer. 2013;81:475-479.

30. Schioppa T, Moore R, Thompson RG, et al. B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc Natl Acad Sci U S A. 2011;108:10662-10667.

31. Olkhanud PB, Damdinsuren B, Bodogai M, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res. 2011;71:3505-3515.

32. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer [Internet]. 2024 Sep [cited 2025 Nov 22];24(9):629-646. Available from: [https://pubmed.ncbi.nlm.nih.gov/39117919/](https://pubmed.ncbi.nlm.nih.gov/39117919/)

33. Role of tertiary lymphoid structures and B cells in clinical immunotherapy of gastric cancer. Front Immunol [Internet]. 2025 Jan 7 [cited 2025 Nov 22];15:1519034. Available from: [https://pubmed.ncbi.nlm.nih.gov/39840050/](https://pubmed.ncbi.nlm.nih.gov/39840050/)

34. Andreu P, Johansson M, Affara NI, et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17:121-134.

35. Biswas SK. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity. 2015;43(3):435-449.

36. Juszczak M, Glabinski A. The role of Th17 cells in the pathogenesis of multiple sclerosis. Postepy Hig Med Dosw. 2009;63:492-501.

37. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137-148.

38. Gresser I, Bourali C, Levy JP, et al. Increased survival in mice inoculated with tumor cells and treated with interferon preparations. Proc Natl Acad Sci U S A. 1969;63(1):51-57.

39. Ngiow SF, Teng MWL, Smyth MJ. Prospects for TIM-3-targeted antitumor immunotherapy. Cancer Res. 2011;71(21):6567-6571.

40. Memorial Sloan Kettering Cancer Center. Immunotherapy Timeline [Internet]. Available from: [https://www.mskcc.org/timeline/immunotherapy-msk](https://www.mskcc.org/timeline/immunotherapy-msk). Accessed 2020 Sep 11.

41. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909-915.

42. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):11-14.

43. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909-915.

44. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909-915.

45. Swatler J, Kozlowska E. Immune checkpoint-targeted cancer immunotherapies. Postepy Hig Med Dosw. 2016;70:25-42.

46. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459-465.

47. Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system?. Immunol Rev. 2019;287(1):33-49.

48. Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167-3175.

49. Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J Cell Physiol. 2019;234(2):1313-1325.

50. Van der Vlist M, Kuball J, Radstake TR, Meyaard L. Immune checkpoints and rheumatic diseases: what can cancer immunotherapy teach us?. Nat Rev Rheumatol. 2016;12(10):593-604.

51. U.S. Food and Drug Administration. FDA approves Opdualag for unresectable or metastatic melanoma [Internet]. FDA; 2022 Mar 18 [cited 2025 Nov 22]. Available from: [https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma](https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-opdualag-unresectable-or-metastatic-melanoma)

52. Relatlimab: a novel drug targeting immune checkpoint LAG-3 in melanoma therapy. Front Pharmacol [Internet]. 2024 Jan 10 [cited 2025 Nov 22];14:1349081. Available from: [https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1349081/full](https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2023.1349081/full)

53. Mahoney K, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14:561-584.

54. Wang X, Geng S. Diet-gut microbial interactions influence cancer immunotherapy. Front Oncol [Internet]. 2023 [cited 2025 Nov 22];13:1138362. Available from: [https://pubmed.ncbi.nlm.nih.gov/37035188/](https://pubmed.ncbi.nlm.nih.gov/37035188/)

55. Gut microbiota reshapes cancer immunotherapy efficacy: Mechanisms and therapeutic strategies. PMC [Internet]. 2024 [cited 2025 Nov 22]. Available from: [https://pmc.ncbi.nlm.nih.gov/articles/PMC10989143/](https://pmc.ncbi.nlm.nih.gov/articles/PMC10989143/)

56. Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86:1159-1166.

57. Kiefer JD. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site. Immunol Rev. 2016;270:178-192.

58. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62-68.

59. Li Z, Song W, Rubinstein M, Liu D. Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. J Hematol Oncol. 2018;11:142.

60. Pan C, Liu H, Robins E, et al. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13:29.

61. Casares N, Pequignot MO, Tesniere A, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691-1701.

62. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28:690-714.

63. Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486-541.

64. Patel SA, Minn AJ. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity. 2018;48:417-433.

65. Qi J, Jin F, Xu X, Du Y. Combination Cancer Immunotherapy of Nanoparticle-Based Immunogenic Cell Death Inducers and Immune Checkpoint Inhibitors. Int J Nanomedicine. 2021;16:1435-1456.

66. Dunn J, Rao S. Epigenetics and immunotherapy: the current state of play. Mol Immunol. 2017;87:227-239.

67. Rossi C, Gilhodes J, Maerevoet M, et al. Efficacy of chemotherapy or chemo-anti-PD-1 combination after failed anti-PD-1 therapy for relapsed and refractory Hodgkin lymphoma: a series from Lysa centers. Am J Hematol. 2018;93:1042-1049.

68. Park SE, Lee SH, Ahn JS, et al. Increased response rates to salvage chemotherapy administered after PD-1/PD-L1 inhibitors in patients with non-small cell lung cancer. J Thorac Oncol. 2018;13:106-111.

69. Stencel K. Immunotherapy in the treatment of small cell lung cancer patients. Onkol Prak Klin Edu. 2020;6:11-15.

70. U.S. Food and Drug Administration. FDA grants traditional approval to tarlatamab-dlle for extensive stage small cell lung cancer [Internet]. FDA; 2025 Nov 19 [cited 2025 Nov 22]. Available from: [https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-traditional-approval-tarlatamab-dlle-extensive-stage-small-cell-lung-cancer](https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-traditional-approval-tarlatamab-dlle-extensive-stage-small-cell-lung-cancer)

71. FDA Approves Tarlatamab (Imdelltra) for Small Cell Lung Cancer [Internet]. Oncology News Central; 2025 Nov 20 [cited 2025 Nov 22]. Available from: [https://www.oncologynewscentral.com/drugs/info/fda-approves-tarlatamab-for-small-cell-lung-cancer](https://www.oncologynewscentral.com/drugs/info/fda-approves-tarlatamab-for-small-cell-lung-cancer)

72. Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016;40:25-37.

73. Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925-931.

74. Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259-1271.

75. Vermeer DW, Spanos WC, Vermeer PD, et al. Radiation-induced loss of cell surface CD47 enhances immune-mediated clearance of human papillomavirus-positive cancer. Int J Cancer. 2013;133:120-129.

76. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 2004;23:311-322.

77. Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843-852.

78. Grabham P, Sharma P. The effects of radiation on angiogenesis. Vasc Cell. 2013;5:19.

79. Li Y, Patel SP, Roszik J, Qin Y. Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy. Front Immunol. 2018;9:1591.

80. Zhang F, Manna S, Pop LM, et al. Type I interferon response in radiation-induced anti-tumor immunity. Semin Radiat Oncol. 2020;30:154-161.

81. Vanpouille-Box C, Formenti SC, Demaria S. Toward precision radiotherapy for use with immune checkpoint blockers. Clin Cancer Res. 2018;24:259-265.

82. Turchan WT, Chmura SJ. The role of immunotherapy in combination with oligometastasis-directed therapy: a narrative review. Ann Palliat Med. 2021;10(5):6028-6044.

83. Zeng SX, Zhu Y, Ma AH, et al. The phosphatidylinositol 3-kinase pathway as a potential therapeutic target in bladder cancer. Clin Cancer Res. 2017;23:6580-6591.

84. Kaur S, Chang T, Singh SP, et al. CD47 signaling regulates the immunosuppressive activity of VEGF in T cells. J Immunol. 2014;193:3914-3924.

85. Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6:1755-1766.

86. Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355-1363.

87. Wu K, Yi M, Qin S, et al. The efficacy and safety of combination of PD-1 and CTLA-4 inhibitors: a meta-analysis. Exp Hematol Oncol. 2019;8:26.

88. Qin S, Li A, Yi M, et al. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J Hematol Oncol. 2019;12:27.

89. Hua H, Kong Q, Zhang H, et al. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:71.

90. Kakadia S, Yarlagadda N, Awad R, et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095-7107.

91. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23-34.

92. Lebbe C, Meyer N, Mortier L, et al. Evaluation of two dosing regimens for nivolumab in combination with ipilimumab in patients with advanced melanoma: results from the phase IIIb/IV checkMate 511 trial. J Clin Oncol. 2019;37:867-875.

93. Cybulska-Stopa B, Switaj T, Kosela-Paterczyk H. Treatment of advanced melanoma - combined or sequential?. Nowotwory J Oncol. 2019;4:159-167.

94. Schvartsman G, Taranto P, Glitza I, et al. Management of metastatic cutaneous melanoma: updates in clinical practice. Ther Adv Med Oncol. 2019;11:1758835919833821.

95. Sangro B, Sarobe P, Hervas-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:525-543.

Quality in Sport

Downloads

  • PDF

Published

2025-11-29

How to Cite

1.
FLOREK, Julia, MICZEK, Marcin, DĘBSKA, Patrycja, GROELE, Adrian, ŚMIAŁEK, Sara, GUZIK, Natalia, JAKLIK, Dominik, CHOLEWA, Dominika, STARZYK, Radosław and SŁABY, Wiktor. Tumors and the immune system – reciprocal interaction. Quality in Sport. Online. 29 November 2025. Vol. 47, p. 66827. [Accessed 11 December 2025]. DOI 10.12775/QS.2025.47.66827.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 47 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Julia Florek, Marcin Miczek, Patrycja Dębska, Adrian Groele, Sara Śmiałek, Natalia Guzik, Dominik Jaklik, Dominika Cholewa, Radosław Starzyk, Wiktor Słaby

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 72
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

carcinogenesis, tumor immunoediting, combination therapy
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop