Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The Role of Physical Activity in Gut–Brain Axis Regulation and Cognitive Enhancement in Schizophrenia
  • Home
  • /
  • The Role of Physical Activity in Gut–Brain Axis Regulation and Cognitive Enhancement in Schizophrenia
  1. Home /
  2. Archives /
  3. Vol. 47 (2025) /
  4. Medical Sciences

The Role of Physical Activity in Gut–Brain Axis Regulation and Cognitive Enhancement in Schizophrenia

Authors

  • Patrycja Niczyporuk University Clinical Hospital in Białystok https://orcid.org/0009-0001-5834-5277
  • Izabela Zajkowska Śniadeckiego Voivodeship Hospital in Bialystok https://orcid.org/0009-0002-8526-7339
  • Wiktor Warych Śniadeckiego Voivodeship Hospital in Bialystok https://orcid.org/0009-0003-2569-6833
  • Julia Baran University Clinical Hospital in Białystok https://orcid.org/0009-0005-9569-3149
  • Karolina Wojciechowska Śniadeckiego Voivodeship Hospital in Bialystok https://orcid.org/0009-0001-7048-1335
  • Julia Martowska Śniadeckiego Voivodeship Hospital in Bialystok https://orcid.org/0009-0006-2804-5368

DOI:

https://doi.org/10.12775/QS.2025.47.66793

Keywords

schizophrenia, brain-gut axis, Microbiota, neurotransmitters, activity

Abstract

Background: Recent research highlights the growing importance of the gut–brain axis in neuropsychiatric disorders, including schizophrenia. Particular attention is given to microbial dysbiosis and its influence on neurotransmitter dynamics, systemic inflammation, and cognitive function. Schizophrenia is marked by progressive impairments in attention, working memory, and executive function, often accompanied by hippocampal atrophy—deficits not fully addressed by standard pharmacotherapy.

Aim: This review aims to elucidate the mechanisms through which gut microbiota influence neurotransmitter synthesis and cognitive regulation in schizophrenia, and to evaluate the role of exercise as a potential modulator of both microbiota composition and neuroplasticity.

Material and Methods: A systematic literature review was conducted on March 18, 2025, using a Python-based script to extract relevant studies from PubMed. The search focused on the interactions between schizophrenia, gut microbiota, neurotransmitter systems, and the effects of exercise-based interventions.

Results: Evidence from clinical and preclinical studies indicates that alterations in gut microbiota significantly affect the synthesis of neuroactive compounds such as serotonin, GABA, and dopamine. Moreover, structured exercise programs have been shown to improve cognitive function, increase hippocampal volume, and positively modulate gut microbial composition, suggesting synergistic benefits when combined with conventional treatment.

Conclusions: Targeted interventions addressing the gut–brain axis—through microbiota modulation and exercise therapy—represent promising adjunctive strategies in the treatment of schizophrenia. These approaches may enhance neurocognitive outcomes and support more personalized, holistic models of care.

References

1. Schizophrenia. PubMed. Accessed March 19, 2025. Available from: https://pubmed.ncbi.nlm.nih.gov/30969686

2. Amato D, Kruyer A, Samaha AN, Heinz A. Hypofunctional dopamine uptake and antipsychotic treatment-resistant schizophrenia. Front Psychiatry. 2019;10:314. https://doi.org/10.3389/fpsyt.2019.00314

3. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals Gastroenterol. 2015;28(2):203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367209/

4. Xu M, Zhou EY, Shi H. Tryptophan and its metabolite serotonin impact metabolic and mental disorders via the brain–gut–microbiome axis: a focus on sex differences. Cells. 2025;14(5):384. https://doi.org/10.3390/cells14050384

5. Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: a review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med. 2024;12:20503121241257486. https://doi.org/10.1177/20503121241257486

6. Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The microbiota–gut–brainaxis in psychiatricdisorders. Int J Mol Sci. 2022;23(19):11245. https://doi.org/10.3390/ijms231911245

7. McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry. 2022;27(4):1920–35. https://doi.org/10.1038/s41380-022-01456-3

8. Moitra M, Santomauro D, Collins PY, Vos T, Whiteford H, Saxena S, et al. The global gap in treatment coverage for major depressive disorder in 84 countries from 2000–2019: a systematic review and Bayesian meta-regression analysis. PLoS Med. 2022;19(2):e1003901. https://doi.org/10.1371/journal.pmed.1003901

9. Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161):2299–312. https://doi.org/10.1016/S0140-6736(18)31948-2

10. Pan R, Zhang X, Gao J, Yi W, Wei Q, Su H. Analysis of the diversity of intestinal microbiome and its potential value as a biomarker in patients with schizophrenia: a cohort study. Psychiatry Res. 2020;291:113260. https://doi.org/10.1016/j.psychres.2020.113260

11. Girdler SJ, Confino JE, Woesner ME. Exercise as a Treatment for Schizophrenia: A Review. Psychopharmacol Bull. 2019 Feb 15;49(1):56-69. PMID: 30858639; PMCID: PMC6386427. https://pmc.ncbi.nlm.nih.gov/articles/PMC6386427

12. Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. ProgNeuropsychopharmacolBiol Psychiatry. 2014;48:277–86. https://doi.org/10.1016/j.pnpbp.2012.10.022

13. Csernansky JG. Neurodegeneration in schizophrenia: evidence from in vivo neuroimaging studies. Sci World J. 2007;7:135–43. https://doi.org/10.1100/tsw.2007.47

14. Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, et al. Systematic review of the therapeutic role of apoptotic inhibitors in neurodegeneration and their potential use in schizophrenia. Antioxidants. 2022;11(11):2275. https://doi.org/10.3390/antiox11112275

15. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. NeurogastroenterolMotil. 2013;26(1):98–107. https://doi.org/10.1111/nmo.12236

16. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85(2):289–95. https://doi.org/10.1016/j.neuron.2014.12.037

17. Goehler LE, Gaykema RPA, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain BehavImmun. 2005;19(4):334–44. https://doi.org/10.1016/j.bbi.2004.09.002

18. Ma X, Asif H, Dai L, He Y, Zheng W, Wang D, et al. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J Psychiatry Res. 2020;123:136–44. https://doi.org/10.1016/j.jpsychires.2020.02.005

19. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res. 2018;197:470–7. https://doi.org/10.1016/j.schres.2018.01.002

20. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–33. https://doi.org/10.1016/j.brainres.2018.03.015

21. Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. PubMed. Accessed March 19, 2025. Available from: https://pubmed.ncbi.nlm.nih.gov/10935181

22. Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. ApplBiochemMicrobiol. 2009;45(5):494–7. https://doi.org/10.1134/S0003683809050068

23. Kuley F, Rathod NB, Kuley E, Yilmaz MT, Ozogul F. Inhibition of food-borne pathogen growth and biogenic amine synthesis by spice extracts. Foods. 2024;13(3):364. https://doi.org/10.3390/foods13030364

24. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. ApplEnvironMicrobiol. 2007;73(22):7283–90. https://doi.org/10.1128/AEM.01064-07

25. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J ApplMicrobiol. 2012;113(2):411–7. https://doi.org/10.1111/j.1365-2672.2012.05344.x

26. Stanaszek PM, Snell JF, O’Neill JJ. Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. ApplEnvironMicrobiol. 1977;34(2):237–9. https://doi.org/10.1128/AEM.34.2.237-239.1977

27. Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, et al. The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2021;42(6):1671–92. https://doi.org/10.1007/s10571-021-01064-9

28. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397–414. https://doi.org/10.1053/j.gastro.2006.11.002

29. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc NatlAcadSci U S A. 2009;106(10):3698–703. https://doi.org/10.1073/pnas.0812874106

30. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76. https://doi.org/10.1016/j.cell.2015.02.047

31. De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, Macpherson AJ, Olofsson LE, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc NatlAcadSci U S A. 2018;115(25):6458–63. https://doi.org/10.1073/pnas.1720017115

32. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2018;4(3):396–403. https://doi.org/10.1038/s41564-018-0307-3

33. Dahlin M, Elfving Å, Ungerstedt U, Åmark P. The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res. 2005;64(3):115–25. https://doi.org/10.1016/j.eplepsyres.2005.03.008

34. Perry C, Guillory TS, Dilks SS. Obesity and psychiatric disorders. Nurs Clin North Am. 2021;56(4):553–63. https://doi.org/10.1016/j.cnur.2021.07.010

35. Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611–19.e6. https://doi.org/10.1016/j.cmet.2017.09.008

36. Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr. 2018;23(3):187–91. https://doi.org/10.1017/S1092852918001013

37. Dicks LMT. Gut bacteria and neurotransmitters. Microorganisms. 2022;10(9):1838. https://doi.org/10.3390/microorganisms10091838

38. Hartstra AV, Schüppel V, Imangaliyev S, Schrantee A, Prodan A, Collard D, et al. Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Mol Metab. 2020;42:101076. https://doi.org/10.1016/j.molmet.2020.101076

39. Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines. 2022;10(2):436. https://doi.org/10.3390/biomedicines10020436

40. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. 2004;558(1):263–75. https://doi.org/10.1113/jphysiol.2004.063388

41. Borkent J, Ioannou M, Laman JD, Haarman BCM, Sommer IEC. Role of the gut microbiome in three major psychiatric disorders. Psychol Med. 2022;52(7):1222–42. https://doi.org/10.1017/S0033291722000897

42. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77. https://doi.org/10.1038/nn.4030

43. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;124:91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9

44. Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO₂ fixation. BiochimBiophys Acta Proteins Proteom. 2008;1784(12):1873–98. https://doi.org/10.1016/j.bbapap.2008.08.012

45. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23(2):366–84. https://doi.org/10.1017/S0954422410000247

46. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat RevImmunol. 2009;9(5):313–23. https://doi.org/10.1038/nri2515

47. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. J Physiol. 2018;596(20):4923–44. https://doi.org/10.1113/JP276431

48. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082

49. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9. https://doi.org/10.1074/jbc.M301403200

50. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. SciTransl Med. 2014;6(263):263ra158. https://doi.org/10.1126/scitranslmed.3009759

51. Hong H, Kim BS, Im HI. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. IntNeurourol J. 2016;20(Suppl 1):S2–7. https://doi.org/10.5213/inj.1632604.302

52. Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat RevDrugDiscov. 2019;18(5):379–401. https://doi.org/10.1038/s41573-019-0016-5

53. Anmella G, Amoretti S, Safont G, Meseguer A, Vieta E, Pons-Cabrera MT, et al. Intestinal permeability and low-grade chronic inflammation in schizophrenia: a multicentre study on biomarkers. Spanish J Psychiatr Ment Health. 2023; Available from: https://doi.org/10.1016/j.sjpmh.2023.09.005

54. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat RevNeurosci. 2012;13(10):701–12. https://doi.org/10.1038/nrn3346

55. Zhu F, Guo R, Wang W, Ju Y, Wang Q, Ma Q, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry. 2019;25(11):2905–18. https://doi.org/10.1038/s41380-019-0475-4

56. Kazem YI, Mahmoud MH, Essa HA, Azmy O, Kandeel WA, Al-Moghazy M, et al. Role of Bifidobacterium spp. intake in improving depressive mood and well-being and its link to kynurenine blood level: an interventional study. J ComplementIntegr Med. 2021;20(1):223–32. https://doi.org/10.1515/jcim-2021-0351

57. Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. 2019;25(11):2860–72. https://doi.org/10.1038/s41380-019-0401-9

58. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat RevNeurosci. 2012;13(7):465–77. https://doi.org/10.1038/nrn3257

Quality in Sport

Downloads

  • PDF

Published

2025-11-29

How to Cite

1.
NICZYPORUK, Patrycja, ZAJKOWSKA, Izabela, WARYCH, Wiktor, BARAN, Julia, WOJCIECHOWSKA, Karolina and MARTOWSKA, Julia. The Role of Physical Activity in Gut–Brain Axis Regulation and Cognitive Enhancement in Schizophrenia. Quality in Sport. Online. 29 November 2025. Vol. 47, p. 66793. [Accessed 10 December 2025]. DOI 10.12775/QS.2025.47.66793.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 47 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Patrycja Niczyporuk, Izabela Zajkowska, Wiktor Warych, Julia Baran, Karolina Wojciechowska, Julia Martowska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 75
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

schizophrenia, brain-gut axis, Microbiota, neurotransmitters, activity
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop