The Role of Physical Activity in Gut–Brain Axis Regulation and Cognitive Enhancement in Schizophrenia
DOI:
https://doi.org/10.12775/QS.2025.47.66793Keywords
schizophrenia, brain-gut axis, Microbiota, neurotransmitters, activityAbstract
Background: Recent research highlights the growing importance of the gut–brain axis in neuropsychiatric disorders, including schizophrenia. Particular attention is given to microbial dysbiosis and its influence on neurotransmitter dynamics, systemic inflammation, and cognitive function. Schizophrenia is marked by progressive impairments in attention, working memory, and executive function, often accompanied by hippocampal atrophy—deficits not fully addressed by standard pharmacotherapy.
Aim: This review aims to elucidate the mechanisms through which gut microbiota influence neurotransmitter synthesis and cognitive regulation in schizophrenia, and to evaluate the role of exercise as a potential modulator of both microbiota composition and neuroplasticity.
Material and Methods: A systematic literature review was conducted on March 18, 2025, using a Python-based script to extract relevant studies from PubMed. The search focused on the interactions between schizophrenia, gut microbiota, neurotransmitter systems, and the effects of exercise-based interventions.
Results: Evidence from clinical and preclinical studies indicates that alterations in gut microbiota significantly affect the synthesis of neuroactive compounds such as serotonin, GABA, and dopamine. Moreover, structured exercise programs have been shown to improve cognitive function, increase hippocampal volume, and positively modulate gut microbial composition, suggesting synergistic benefits when combined with conventional treatment.
Conclusions: Targeted interventions addressing the gut–brain axis—through microbiota modulation and exercise therapy—represent promising adjunctive strategies in the treatment of schizophrenia. These approaches may enhance neurocognitive outcomes and support more personalized, holistic models of care.
References
1. Schizophrenia. PubMed. Accessed March 19, 2025. Available from: https://pubmed.ncbi.nlm.nih.gov/30969686
2. Amato D, Kruyer A, Samaha AN, Heinz A. Hypofunctional dopamine uptake and antipsychotic treatment-resistant schizophrenia. Front Psychiatry. 2019;10:314. https://doi.org/10.3389/fpsyt.2019.00314
3. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals Gastroenterol. 2015;28(2):203. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367209/
4. Xu M, Zhou EY, Shi H. Tryptophan and its metabolite serotonin impact metabolic and mental disorders via the brain–gut–microbiome axis: a focus on sex differences. Cells. 2025;14(5):384. https://doi.org/10.3390/cells14050384
5. Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: a review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med. 2024;12:20503121241257486. https://doi.org/10.1177/20503121241257486
6. Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E. The microbiota–gut–brainaxis in psychiatricdisorders. Int J Mol Sci. 2022;23(19):11245. https://doi.org/10.3390/ijms231911245
7. McGuinness AJ, Davis JA, Dawson SL, Loughman A, Collier F, O’Hely M, et al. A systematic review of gut microbiota composition in observational studies of major depressive disorder, bipolar disorder and schizophrenia. Mol Psychiatry. 2022;27(4):1920–35. https://doi.org/10.1038/s41380-022-01456-3
8. Moitra M, Santomauro D, Collins PY, Vos T, Whiteford H, Saxena S, et al. The global gap in treatment coverage for major depressive disorder in 84 countries from 2000–2019: a systematic review and Bayesian meta-regression analysis. PLoS Med. 2022;19(2):e1003901. https://doi.org/10.1371/journal.pmed.1003901
9. Malhi GS, Mann JJ. Depression. Lancet. 2018;392(10161):2299–312. https://doi.org/10.1016/S0140-6736(18)31948-2
10. Pan R, Zhang X, Gao J, Yi W, Wei Q, Su H. Analysis of the diversity of intestinal microbiome and its potential value as a biomarker in patients with schizophrenia: a cohort study. Psychiatry Res. 2020;291:113260. https://doi.org/10.1016/j.psychres.2020.113260
11. Girdler SJ, Confino JE, Woesner ME. Exercise as a Treatment for Schizophrenia: A Review. Psychopharmacol Bull. 2019 Feb 15;49(1):56-69. PMID: 30858639; PMCID: PMC6386427. https://pmc.ncbi.nlm.nih.gov/articles/PMC6386427
12. Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. ProgNeuropsychopharmacolBiol Psychiatry. 2014;48:277–86. https://doi.org/10.1016/j.pnpbp.2012.10.022
13. Csernansky JG. Neurodegeneration in schizophrenia: evidence from in vivo neuroimaging studies. Sci World J. 2007;7:135–43. https://doi.org/10.1100/tsw.2007.47
14. Morén C, Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, et al. Systematic review of the therapeutic role of apoptotic inhibitors in neurodegeneration and their potential use in schizophrenia. Antioxidants. 2022;11(11):2275. https://doi.org/10.3390/antiox11112275
15. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. NeurogastroenterolMotil. 2013;26(1):98–107. https://doi.org/10.1111/nmo.12236
16. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, et al. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85(2):289–95. https://doi.org/10.1016/j.neuron.2014.12.037
17. Goehler LE, Gaykema RPA, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain BehavImmun. 2005;19(4):334–44. https://doi.org/10.1016/j.bbi.2004.09.002
18. Ma X, Asif H, Dai L, He Y, Zheng W, Wang D, et al. Alteration of the gut microbiome in first-episode drug-naïve and chronic medicated schizophrenia correlate with regional brain volumes. J Psychiatry Res. 2020;123:136–44. https://doi.org/10.1016/j.jpsychires.2020.02.005
19. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res. 2018;197:470–7. https://doi.org/10.1016/j.schres.2018.01.002
20. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–33. https://doi.org/10.1016/j.brainres.2018.03.015
21. Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. PubMed. Accessed March 19, 2025. Available from: https://pubmed.ncbi.nlm.nih.gov/10935181
22. Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. ApplBiochemMicrobiol. 2009;45(5):494–7. https://doi.org/10.1134/S0003683809050068
23. Kuley F, Rathod NB, Kuley E, Yilmaz MT, Ozogul F. Inhibition of food-borne pathogen growth and biogenic amine synthesis by spice extracts. Foods. 2024;13(3):364. https://doi.org/10.3390/foods13030364
24. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. ApplEnvironMicrobiol. 2007;73(22):7283–90. https://doi.org/10.1128/AEM.01064-07
25. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J ApplMicrobiol. 2012;113(2):411–7. https://doi.org/10.1111/j.1365-2672.2012.05344.x
26. Stanaszek PM, Snell JF, O’Neill JJ. Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. ApplEnvironMicrobiol. 1977;34(2):237–9. https://doi.org/10.1128/AEM.34.2.237-239.1977
27. Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, et al. The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. 2021;42(6):1671–92. https://doi.org/10.1007/s10571-021-01064-9
28. Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397–414. https://doi.org/10.1053/j.gastro.2006.11.002
29. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc NatlAcadSci U S A. 2009;106(10):3698–703. https://doi.org/10.1073/pnas.0812874106
30. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76. https://doi.org/10.1016/j.cell.2015.02.047
31. De Vadder F, Grasset E, Mannerås Holm L, Karsenty G, Macpherson AJ, Olofsson LE, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc NatlAcadSci U S A. 2018;115(25):6458–63. https://doi.org/10.1073/pnas.1720017115
32. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2018;4(3):396–403. https://doi.org/10.1038/s41564-018-0307-3
33. Dahlin M, Elfving Å, Ungerstedt U, Åmark P. The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res. 2005;64(3):115–25. https://doi.org/10.1016/j.eplepsyres.2005.03.008
34. Perry C, Guillory TS, Dilks SS. Obesity and psychiatric disorders. Nurs Clin North Am. 2021;56(4):553–63. https://doi.org/10.1016/j.cnur.2021.07.010
35. Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611–19.e6. https://doi.org/10.1016/j.cmet.2017.09.008
36. Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectr. 2018;23(3):187–91. https://doi.org/10.1017/S1092852918001013
37. Dicks LMT. Gut bacteria and neurotransmitters. Microorganisms. 2022;10(9):1838. https://doi.org/10.3390/microorganisms10091838
38. Hartstra AV, Schüppel V, Imangaliyev S, Schrantee A, Prodan A, Collard D, et al. Infusion of donor feces affects the gut–brain axis in humans with metabolic syndrome. Mol Metab. 2020;42:101076. https://doi.org/10.1016/j.molmet.2020.101076
39. Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines. 2022;10(2):436. https://doi.org/10.3390/biomedicines10020436
40. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. 2004;558(1):263–75. https://doi.org/10.1113/jphysiol.2004.063388
41. Borkent J, Ioannou M, Laman JD, Haarman BCM, Sommer IEC. Role of the gut microbiome in three major psychiatric disorders. Psychol Med. 2022;52(7):1222–42. https://doi.org/10.1017/S0033291722000897
42. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77. https://doi.org/10.1038/nn.4030
43. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;124:91–119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9
44. Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO₂ fixation. BiochimBiophys Acta Proteins Proteom. 2008;1784(12):1873–98. https://doi.org/10.1016/j.bbapap.2008.08.012
45. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23(2):366–84. https://doi.org/10.1017/S0954422410000247
46. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat RevImmunol. 2009;9(5):313–23. https://doi.org/10.1038/nri2515
47. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. J Physiol. 2018;596(20):4923–44. https://doi.org/10.1113/JP276431
48. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082
49. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9. https://doi.org/10.1074/jbc.M301403200
50. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. SciTransl Med. 2014;6(263):263ra158. https://doi.org/10.1126/scitranslmed.3009759
51. Hong H, Kim BS, Im HI. Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. IntNeurourol J. 2016;20(Suppl 1):S2–7. https://doi.org/10.5213/inj.1632604.302
52. Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat RevDrugDiscov. 2019;18(5):379–401. https://doi.org/10.1038/s41573-019-0016-5
53. Anmella G, Amoretti S, Safont G, Meseguer A, Vieta E, Pons-Cabrera MT, et al. Intestinal permeability and low-grade chronic inflammation in schizophrenia: a multicentre study on biomarkers. Spanish J Psychiatr Ment Health. 2023; Available from: https://doi.org/10.1016/j.sjpmh.2023.09.005
54. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat RevNeurosci. 2012;13(10):701–12. https://doi.org/10.1038/nrn3346
55. Zhu F, Guo R, Wang W, Ju Y, Wang Q, Ma Q, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry. 2019;25(11):2905–18. https://doi.org/10.1038/s41380-019-0475-4
56. Kazem YI, Mahmoud MH, Essa HA, Azmy O, Kandeel WA, Al-Moghazy M, et al. Role of Bifidobacterium spp. intake in improving depressive mood and well-being and its link to kynurenine blood level: an interventional study. J ComplementIntegr Med. 2021;20(1):223–32. https://doi.org/10.1515/jcim-2021-0351
57. Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, et al. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. 2019;25(11):2860–72. https://doi.org/10.1038/s41380-019-0401-9
58. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat RevNeurosci. 2012;13(7):465–77. https://doi.org/10.1038/nrn3257
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Patrycja Niczyporuk, Izabela Zajkowska, Wiktor Warych, Julia Baran, Karolina Wojciechowska, Julia Martowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 75
Number of citations: 0