Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Heart Rate Variability (HRV) as an Objective Indicator of the Stress Response: Physiological Mechanisms, Diagnostic Potential, and Clinical Applications
  • Home
  • /
  • Heart Rate Variability (HRV) as an Objective Indicator of the Stress Response: Physiological Mechanisms, Diagnostic Potential, and Clinical Applications
  1. Home /
  2. Archives /
  3. Vol. 46 (2025) /
  4. Health Sciences

Heart Rate Variability (HRV) as an Objective Indicator of the Stress Response: Physiological Mechanisms, Diagnostic Potential, and Clinical Applications

Authors

  • Dominika Szaj Franciszek Raszeja City Hospital, Poznań https://orcid.org/0009-0008-5138-1153
  • Paulina Strzałkowska University Clinical Hospital in Poznań https://orcid.org/0009-0000-7495-5561
  • Michalina Raczkowska Sacred Heart of Jesus Hospital in Środa Wielkopolska https://orcid.org/0009-0002-3976-5134
  • Maciej Hobot University Clinical Hospital in Poznań https://orcid.org/0009-0001-0087-6171
  • Wojciech Grabski University Clinical Hospital in Poznań https://orcid.org/0009-0000-3024-8873

DOI:

https://doi.org/10.12775/QS.2025.46.66625

Keywords

HRV, heart rate variability, stress, autonomic nervous system, biofeedback, mental health

Abstract

Heart rate variability (HRV) has gained recognition as a biomarker of autonomic nervous system activity and the body's adaptive capacity. This review discusses the physiological foundations of HRV and its relationship to the body's response to both acute and chronic stress. The main methods of HRV measurement are: time-domain, frequency-domain, and nonlinear. These are presented, along with their advantages, limitations, and key technical requirements. Particular attention is given to the application of HRV in the diagnosis, treatment, and prevention of stress-related disorders such as depression and anxiety, as well as the potential use of HRV biofeedback and mobile monitoring technologies. The review highlights current limitations in interpretative standards, the influence of confounding factors, and the need for individualized analysis. The potential for artificial intelligence tools to personalize stress assessment is also discussed. Despite growing clinical interest, HRV requires further standardization and research to enhance its utility
as a tool for assessing psychophysiological states.

References

McEwen B. S. (2006). Protective and damaging effects of stress mediators: central role of the brain. Dialogues in clinical neuroscience, 8(4), 367–381. https://doi.org/10.31887/DCNS.2006.8.4/bmcewen

Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in public health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258

Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of affective disorders, 61(3), 201–216. https://doi.org/10.1016/s0165-0327(00)00338-4

Kim, H. G., Cheon, E. J., Bai, D. S., Lee, Y. H., & Koo, B. H. (2018). Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry investigation, 15(3), 235–245. https://doi.org/10.30773/pi.2017.08.17

Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: how and why does it work?. Frontiers in psychology, 5, 756. https://doi.org/10.3389/fpsyg.2014.00756

Chalmers, J. A., Quintana, D. S., Abbott, M. J., & Kemp, A. H. (2014). Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Frontiers in psychiatry, 5, 80. https://doi.org/10.3389/fpsyt.2014.00080

Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research - Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in psychology, 8, 213. https://doi.org/10.3389/fpsyg.2017.00213

Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354–381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868

Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neuroscience and biobehavioral reviews, 33(2), 81–88. https://doi.org/10.1016/j.neubiorev.2008.08.004

Li, K., Rüdiger, H., & Ziemssen, T. (2019). Spectral Analysis of Heart Rate Variability: Time Window Matters. Frontiers in neurology, 10, 545. https://doi.org/10.3389/fneur.2019.00545

Billman G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in physiology, 4, 26. https://doi.org/10.3389/fphys.2013.00026

Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Frontiers in psychology, 5, 1040. https://doi.org/10.3389/fpsyg.2014.01040

Henriques, T., Ribeiro, M., Teixeira, A., Castro, L., Antunes, L., & Costa-Santos, C. (2020). Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy (Basel, Switzerland), 22(3), 309. https://doi.org/10.3390/e22030309

Voss, A., Schulz, S., Schroeder, R., Baumert, M., & Caminal, P. (2009). Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 367(1887), 277–296. https://doi.org/10.1098/rsta.2008.0232

Gospodinova, E., Lebamovski, P., Georgieva-Tsaneva, G., & Negreva, M. (2023). Evaluation of the methods for nonlinear analysis of heart rate variability. Fractal and Fractional, 7(5), 388. https://doi.org/10.3390/fractalfract7050388

Peltola M. A. (2012). Role of editing of R-R intervals in the analysis of heart rate variability. Frontiers in physiology, 3, 148. https://doi.org/10.3389/fphys.2012.00148

Spellenberg, C., Heusser, P., Büssing, A., Savelsbergh, A., & Cysarz, D. (2020). Binary symbolic dynamics analysis to detect stress-associated changes of nonstationary heart rate variability. Scientific reports, 10(1), 15440. https://doi.org/10.1038/s41598-020-72034-2

Schubert, C., Lambertz, M., Nelesen, R. A., Bardwell, W., Choi, J. B., & Dimsdale, J. E. (2009). Effects of stress on heart rate complexity--a comparison between short-term and chronic stress. Biological psychology, 80(3), 325–332. https://doi.org/10.1016/j.biopsycho.2008.11.005

Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L., Brown, K., & Gatt, J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biological psychiatry, 67(11), 1067–1074. https://doi.org/10.1016/j.biopsych.2009.12.012

Henje Blom, E., Olsson, E. M., Serlachius, E., Ericson, M., & Ingvar, M. (2010). Heart rate variability (HRV) in adolescent females with anxiety disorders and major depressive disorder. Acta paediatrica (Oslo, Norway : 1992), 99(4), 604–611. https://doi.org/10.1111/j.1651-2227.2009.01657.x

Williams, D. P., Koenig, J., Carnevali, L., Sgoifo, A., Jarczok, M. N., Sternberg, E. M., & Thayer, J. F. (2019). Heart rate variability and inflammation: A meta-analysis of human studies. Brain, behavior, and immunity, 80, 219–226. https://doi.org/10.1016/j.bbi.2019.03.009

Sammito, S., Thielmann, B., & Böckelmann, I. (2024). Update: Factors influencing heart rate variability–A narrative review. Frontiers in Physiology. https://doi.org/10.3389/fphys.2024.1430458

Appelhans, B. M., & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10(3), 229–240. https://doi.org/10.1037/1089-2680.10.3.229

Karpyak, V. M., Rasmussen, K. G., Hammill, S. C., & Mrazek, D. A. (2004). Changes in heart rate variability in response to treatment with electroconvulsive therapy. The journal of ECT, 20(2), 81–88. https://doi.org/10.1097/00124509-200406000-00002

Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training. Applied psychophysiology and biofeedback, 25(3), 177–191. https://doi.org/10.1023/a:1009554825745

Steffen, P. R., Austin, T., DeBarros, A., & Brown, T. (2017). The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood. Frontiers in public health, 5, 222. https://doi.org/10.3389/fpubh.2017.00222

Goessl, V. C., Curtiss, J. E., & Hofmann, S. G. (2017). The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychological medicine, 47(15), 2578–2586. https://doi.org/10.1017/S0033291717001003

Euteneuer, F., Neuert, M., Salzmann, S., Fischer, S., Ehlert, U., & Rief, W. (2023). Does psychological treatment of major depression reduce cardiac risk biomarkers? An exploratory randomized controlled trial. Psychological medicine, 53(8), 3735–3749. https://doi.org/10.1017/S0033291722000447

Järvelin-Pasanen, S., Sinikallio, S., & Tarvainen, M. P. (2018). Heart rate variability and occupational stress-systematic review. Industrial health, 56(6), 500–511. https://doi.org/10.2486/indhealth.2017-0190

Tan, G., Dao, T. K., Farmer, L., Sutherland, R. J., & Gevirtz, R. (2011). Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): a pilot study. Applied psychophysiology and biofeedback, 36(1), 27–35. https://doi.org/10.1007/s10484-010-9141-y

Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports medicine (Auckland, N.Z.), 43(9), 773–781. https://doi.org/10.1007/s40279-013-0071-8

Balaji, S., Plonka, N., Atkinson, M., Muthu, M., Ragulskis, M., Vainoras, A., & McCraty, R. (2025). Heart rate variability biofeedback in a global study of the most common coherence frequencies and the impact of emotional states. Scientific reports, 15(1), 3241. https://doi.org/10.1038/s41598-025-87729-7

Lehrer, P., & Eddie, D. (2013). Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions. Applied psychophysiology and biofeedback, 38(2), 143–155. https://doi.org/10.1007/s10484-013-9217-6

Machado, A. V., Pereira, M. G., Souza, G. G. L., Xavier, M., Aguiar, C., de Oliveira, L., & Mocaiber, I. (2021). Association between distinct coping styles and heart rate variability changes to an acute psychosocial stress task. Scientific reports, 11(1), 24025. https://doi.org/10.1038/s41598-021-03386-6

Bahameish, M., Stockman, T., & Requena Carrión, J. (2024). Strategies for Reliable Stress Recognition: A Machine Learning Approach Using Heart Rate Variability Features. Sensors (Basel, Switzerland), 24(10), 3210. https://doi.org/10.3390/s24103210

Quality in Sport

Downloads

  • PDF

Published

2025-11-20

How to Cite

1.
SZAJ, Dominika, STRZAŁKOWSKA, Paulina, RACZKOWSKA, Michalina, HOBOT, Maciej and GRABSKI, Wojciech. Heart Rate Variability (HRV) as an Objective Indicator of the Stress Response: Physiological Mechanisms, Diagnostic Potential, and Clinical Applications. Quality in Sport. Online. 20 November 2025. Vol. 46, p. 66625. [Accessed 11 December 2025]. DOI 10.12775/QS.2025.46.66625.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 46 (2025)

Section

Health Sciences

License

Copyright (c) 2025 Dominika Szaj, Paulina Strzałkowska, Michalina Raczkowska, Maciej Hobot, Wojciech Grabski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 147
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

HRV, heart rate variability, stress, autonomic nervous system, biofeedback, mental health
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop