The Therapeutic Potential of Vitamin D in Tendinopathy: A Review of Current Evidence
DOI:
https://doi.org/10.12775/QS.2025.46.66617Keywords
Tendinopathy, Vitamin D, TendonAbstract
Introduction: Tendinopathy refers to pathological changes in tendons that cause pain, functional impairment, and limited physical activity. These changes often result from repetitive overloading without adequate recovery, leading to microtrauma, collagen disorganization, vascular alterations, and chronic inflammation. While corticosteroids offer short-term relief, they may weaken tendon structure, and regenerative therapies like PRP and stem cells remain inconclusive. Recently, vitamin D has gained attention for its potential role in tendon healing. Low vitamin D levels are linked to higher tendinopathy risk and delayed recovery. This review aims to summarize current evidence on the role of vitamin D in tendon regeneration and its potential therapeutic application.
Materials and methods: A review of selected literature in the PubMed, Scopus, Web of Science and Google Schoolar databases was conducted, using the following keywords: “Tendinopathy”, “Vitamin D”, “Tendon”.
Conclusions: The potential role of vitamin D in tendon regeneration is a subject that offers novel perspectives on the treatment of tendinopathies. The therapeutic options currently available are limited in scope, frequently offering only symptomatic relief without addressing the underlying pathophysiology. The evidence from in vitro and in vivo experiments suggests that vitamin D can modulate inflammation, support collagen synthesis, and protect tenocytes from oxidative stress. Multidisciplinary management of tendinopathy should consider the assessment and correction of vitamin D deficiency, especially in older or physically active individuals. Further high-quality clinical studies are required to confirm these findings, determine optimal supplementation strategies, and evaluate long-term functional outcomes.
References
1. Lin TWTW, Cardenas L, Soslowsky LJLJ. Biomechanics of tendon injury and repair. J Biomech. 2004;37(6):865-877. https://doi.org/10.1016/j.jbiomech.2003.11.005
2. Riley G. Tendinopathy--from basic science to treatment. Nat Clin Pract Rheumatol. 2008;4(2):82-89. https://doi.org/10.1038/ncprheum0700
3. Abate M, Gravare-Silbernagel K, Siljeholm C, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther. 2009;11(3):235. https://doi.org/10.1186/ar2723
4. Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet Lond Engl. 2010;376(9754):1751-1767. https://doi.org/10.1016/S0140-6736(10)61160-9
5. Zhang J, Nie D, Williamson K, Rocha JL, Hogan MV, Wang JHC. Selectively activated PRP exerts differential effects on tendon stem/progenitor cells and tendon healing. J Tissue Eng. 2019;10:2041731418820034. https://doi.org/10.1177/2041731418820034
6. Angeline ME, Ma R, Pascual-Garrido C, et al. Effect of Diet-Induced Vitamin D Deficiency on Rotator Cuff Healing in a Rat Model. Am J Sports Med. 2014;42(1):27-34. https://doi.org/10.1177/0363546513505421
7. Abbah SA, Spanoudes K, O’Brien T, Pandit A, Zeugolis DI. Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models. Stem Cell Res Ther. 2014;5(2):38. https://doi.org/10.1186/scrt426
8. Andarawis-Puri N, Flatow EL, Soslowsky LJ. Tendon basic science: Development, repair, regeneration, and healing. J Orthop Res Off Publ Orthop Res Soc. 2015;33(6):780-784. https://doi.org/10.1002/jor.22869
9. Ackermann PW, Renström P. Tendinopathy in sport. Sports Health. 2012;4(3):193-201. https://doi.org/10.1177/1941738112440957
10. Loiacono C, Palermi S, Massa B, et al. Tendinopathy: Pathophysiology, Therapeutic Options, and Role of Nutraceutics. A Narrative Literature Review. Medicina (Mex). 2019;55(8):447. https://doi.org/10.3390/medicina55080447
11. Tempfer H, Traweger A. Tendon Vasculature in Health and Disease. Front Physiol. 2015;6:330. https://doi.org/10.3389/fphys.2015.00330
12. Zhang K, Zhang S, Li Q, et al. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells. Biochem Biophys Res Commun. 2014;450(1):762-766. https://doi.org/10.1016/j.bbrc.2014.06.058
13. Abate M, Guelfi M, Pantalone A, et al. Therapeutic use of hormones on tendinopathies: a narrative review. Muscles Ligaments Tendons J. 2017;6(4):445-452. https://doi.org/10.11138/mltj/2016.6.4.445
14. Sirico F, Ricca F, DI Meglio F, et al. Local corticosteroid versus autologous blood injections in lateral epicondylitis: meta-analysis of randomized controlled trials. Eur J Phys Rehabil Med. 2017;53(3):483-491. https://doi.org/10.23736/S1973-9087.16.04252-0
15. Petrella RJ, Cogliano A, Decaria J, Mohamed N, Lee R. Management of Tennis Elbow with sodium hyaluronate periarticular injections. Sports Med Arthrosc Rehabil Ther Technol SMARTT. 2010;2:4. https://doi.org/10.1186/1758-2555-2-4
16. Muneta T, Koga H, Ju YJ, Mochizuki T, Sekiya I. Hyaluronan injection therapy for athletic patients with patellar tendinopathy. J Orthop Sci Off J Jpn Orthop Assoc. 2012;17(4):425-431. https://doi.org/10.1007/s00776-012-0225-9
17. Zhou Y, Wang JHC. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies. BioMed Res Int. 2016;2016:9103792. https://doi.org/10.1155/2016/9103792
18. Rabago D, Nourani B. Prolotherapy for Osteoarthritis and Tendinopathy: a Descriptive Review. Curr Rheumatol Rep. 2017;19(6):34. https://doi.org/10.1007/s11926-017-0659-3
19. Dunning J, Butts R, Mourad F, Young I, Flannagan S, Perreault T. Dry needling: a literature review with implications for clinical practice guidelines. Phys Ther Rev. 2014;19(4):252-265. https://doi.org/10.1179/108331913X13844245102034
20. Maffulli N, Spiezia F, Longo UG, Denaro V, Maffulli GD. High volume image guided injections for the management of chronic tendinopathy of the main body of the Achilles tendon. Phys Ther Sport Off J Assoc Chart Physiother Sports Med. 2013;14(3):163-167. https://doi.org/10.1016/j.ptsp.2012.07.002
21. Chen YC, Ninomiya T, Hosoya A, Hiraga T, Miyazawa H, Nakamura H. 1α,25-Dihydroxyvitamin D3 inhibits osteoblastic differentiation of mouse periodontal fibroblasts. Arch Oral Biol. 2012;57(5):453-459. https://doi.org/10.1016/j.archoralbio.2011.10.005
22. Poulsen R, Zarei A, Sabokbar A, Hulley P. Tendon, a vitamin D-responsive tissue - why the British weather may not just be bad for your bones! 2013;94(4). Accessed July 9, 2025. https://ora.ox.ac.uk/objects/uuid:4892bbd3-8f1d-4822-be22-65a3b0e719cd
23. Scott A, Nordin C. Do Dietary Factors Influence Tendon Metabolism? In: Ackermann PW, Hart DA, eds. Metabolic Influences on Risk for Tendon Disorders. Springer International Publishing; 2016:283-289. https://doi.org/10.1007/978-3-319-33943-6_27
24. Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50(4):1-14. https://doi.org/10.1038/s12276-018-0038-9
25. Wintermeyer E, Ihle C, Ehnert S, et al. Crucial Role of Vitamin D in the Musculoskeletal System. Nutrients. 2016;8(6):319. https://doi.org/10.3390/nu8060319
26. Millar NL, Murrell GAC, McInnes IB. Inflammatory mechanisms in tendinopathy - towards translation. Nat Rev Rheumatol. 2017;13(2):110-122. https://doi.org/10.1038/nrrheum.2016.213
27. Khoo AL, Chai LYA, Koenen HJPM, et al. Vitamin D(3) down-regulates proinflammatory cytokine response to Mycobacterium tuberculosis through pattern recognition receptors while inducing protective cathelicidin production. Cytokine. 2011;55(2):294-300. https://doi.org/10.1016/j.cyto.2011.04.016
28. Chen J, Tang Z, Slominski AT, et al. Vitamin D and its analogs as anticancer and anti-inflammatory agents. Eur J Med Chem. 2020;207:112738. https://doi.org/10.1016/j.ejmech.2020.112738
29. Min K, Lee JM, Kim MJ, et al. Restoration of Cellular Proliferation and Characteristics of Human Tenocytes by Vitamin D. J Orthop Res Off Publ Orthop Res Soc. 2019;37(10):2241-2248. https://doi.org/10.1002/jor.24352
30. Maman E, Somjen D, Maman E, et al. The response of cells derived from the supraspinatus tendon to estrogen and calciotropic hormone stimulations: in vitro study. Connect Tissue Res. 2016;57(2):124-130. https://doi.org/10.3109/03008207.2015.1114615
31. Kim HT, Lee SH, Lee JK, Chung SW. Influence of Vitamin D Deficiency on the Expression of Genes and Proteins in Patients With Medium Rotator Cuff Tears. Am J Sports Med. 2023;51(10):2650-2658. https://doi.org/10.1177/03635465231184392
32. Lee JH, Kim JY, Kim JY, Mun JW, Yeo JH. Prevalence of and Risk Factors for Hypovitaminosis D in Patients with Rotator Cuff Tears. Clin Orthop Surg. 2021;13(2):237-242. https://doi.org/10.4055/cios20058
33. Liu G, Li W, Zhang L, Zhou C, Cong R. The role of vitamin D on rotator cuff tear with osteoporosis. Front Endocrinol. 2022;13:1017835. https://doi.org/10.3389/fendo.2022.1017835
34. Ryu KJ, Kim BH, Lee Y, Dan J, Kim JH. Low Serum Vitamin D Is Not Correlated With the Severity of a Rotator Cuff Tear or Retear After Arthroscopic Repair. Am J Sports Med. 2015;43(7):1743-1750. https://doi.org/10.1177/0363546515578101
35. Degen RM, Nawabi DH, Gromis J, et al. The role of vitamin D deficiency in rotator cuff integrity: does it affect post-operative healing? J Shoulder Elbow Surg. 2016;25(10):e323. https://doi.org/10.1016/j.jse.2016.07.046
36. Harada GK, Arshi A, Fretes N, et al. Preoperative Vitamin D Deficiency Is Associated With Higher Postoperative Complications in Arthroscopic Rotator Cuff Repair. J Am Acad Orthop Surg Glob Res Rev. 2019;3(7):e075. https://doi.org/10.5435/JAAOSGlobal-D-19-00075
37. Cancienne JM, Brockmeier SF, Kew ME, Werner BC. Perioperative Serum 25-Hydroxyvitamin D Levels Affect Revision Surgery Rates After Arthroscopic Rotator Cuff Repair. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2019;35(3):763-769. https://doi.org/10.1016/j.arthro.2018.09.032
38. Chen J, Lou J, Wang W, Xu G. Association of Preoperative Vitamin D Deficiency With Retear Rate and Early Pain After Arthroscopic Rotator Cuff Repair: A Retrospective Cohort Study. Orthop J Sports Med. 2022;10(10):23259671221130315. https://doi.org/10.1177/23259671221130315
39. Min K, Lee JM, Kim MJ, et al. Restoration of Cellular Proliferation and Characteristics of Human Tenocytes by Vitamin D. J Orthop Res Off Publ Orthop Res Soc. 2019;37(10):2241-2248. https://doi.org/10.1002/jor.24352
40. Kim DS, Kim JH, Baek SW, et al. Controlled vitamin D delivery with injectable hyaluronic acid-based hydrogel for restoration of tendinopathy. J Tissue Eng. 2022;13:20417314221122089. https://doi.org/10.1177/20417314221122089
41. Cavalli L, D’Elia G, Caracchini G, De Masi De Luca A, Innocenti P, Brandi ML. P28 - Calcific Tendinopathy and Vitamin D Status: A Potential Aetiopathogenetic Factor and Therapeutic Approach. Clin Cases Miner Bone Metab. 2010;7(3):234. PMCID: PMC3213790
42. Yaka H, Başbuğ V, Tekin AA, Özer M. Evaluation of the relationship between lateral epicondylitis and vitamin D. Jt Dis Relat Surg. 2022;33(2):414-418. https://doi.org/10.52312/jdrs.2022.686
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bartosz Łuniewski, Monika Olszanska, Angelika Macko, Maria Łuniewska, Iga Maria Nowicka, Kamil Klaudiusz Lauko, Adam Rafałowicz, Urszula Justyna Wojciechowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0