Use of Artificial Intelligence in rheumatoid arthtitis
DOI:
https://doi.org/10.12775/QS.2025.46.66588Keywords
rheumatoid arthritis, Artificial Intelligence, deep learning, machine learningAbstract
Early diagnosis of rheumatoid arthritis (RA) is essential in preventing irreversible joint damage, disease progression, reducing symptoms, and improving long-term outcomes for patients. Artificial intelligence (AI) including machine learning (ML) and deep learning (DL) have the potential of helping medical professionals in detecting RA at an early stage and therefore helping in disease management and timely intervention. However, more research is required to confirm dependabillity of AI in RA. Despite the promising results achieved by AI models they are not fully ready to be used in clinical practice. Future investigations are required to create reliable algorithms.
References
1. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021, Black, Rachel J et al. The Lancet Rheumatology, Volume 5, Issue 10, e594 - e610
2. Klareskog L, Catrina AI, Paget S. Rheumatoid arthritis. Lancet. 2009 Feb 21;373(9664):659-72. doi: 10.1016/S0140-6736(09)60008-8.
3. Wang J, Tian Y, Zhou T, Tong D, Ma J, Li J. A survey of artificial intelligence in rheumatoid arthritis. Rheumatol Immunol Res. 2023 Jul 22;4(2):69-77. doi: 10.2478/rir-2023-0011.
4. Hügle M, Omoumi P, van Laar JM, Boedecker J, Hügle T. Applied machine learning and artificial intelligence in rheumatology. Rheumatol Adv Pract. 2020 Feb 19;4(1):rkaa005. doi: 10.1093/rap/rkaa005.
5. van der Woude D, van der Helm-van Mil AHM. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2018;32:174–187. doi: 10.1016/j.berh.2018.10.005.
6. Nicoara AI, Sas LM, Bita CE, Dinescu SC, Vreju FA. Implementation of artificial intelligence models in magnetic resonance imaging with focus on diagnosis of rheumatoid arthritis and axial spondyloarthritis: narrative review. Front Med (Lausanne). 2023 Dec 20;10:1280266. doi: 10.3389/fmed.2023.1280266.
7. .Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–2581. doi: 10.1002/art.27584.
8.Bullock J, Rizvi SAA, Saleh AM, Ahmed SS, Do DP, Ansari RA, Ahmed J. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract. 2018;27:501–507. doi: 10.1159/000493390.
9. Rajpurkar P, Chen E, Banerjee O. AI in health and medicine. Nat Med. 2022;28:31. doi: 10.1038/s41591-021-01614-0.
10. Adams LC, Bressem KK, Ziegeler K, Vahldiek JL, Poddubnyy D. Artificial intelligence to analyze magnetic resonance imaging in rheumatology. Joint Bone Spine. (2024) 91:105651. doi: 10.1016/j.jbspin.2023.105651.
11. Paul, D, Sanap, G, Shenoy, S, Kalyane, D, Kalia, K, and Tekade, RK. Artificial intelligence in drug discovery and development. Drug Discov Today. (2021) 26:80–93. doi: 10.1016/j.drudis.2020.10.010
12. Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z. Deep learning and its applications in biomedicine. Genom Proteom Bioinform. 2018;16:17–32. doi: 10.1016/j.gpb.2017.07.003.
13. Esteva, A, Robicquet, A, Ramsundar, B, Kuleshov, V, DePristo, M, Chou, K, et al. A guide to deep learning in healthcare. Nat Med. (2019) 25:24–9. doi: 10.1038/s41591-018-0316-z
14. Kedra J, Radstake T, Pandit A, Baraliakos X, Berenbaum F, Finckh A, et al. Current status of use of big data and arti- ficial intelligence in RMDs: a systematic literature review informing EULAR recommendations. RMD Open. (2019) 5:e001004. doi: 10.1136/rmdopen-2019-001004.
15. Stack RJ, Nightingale P, Jinks C. Delays between the onset of symptoms and first rheumatology consultation in patients with rheumatoid arthritis in the UK: an observational study. BMJ Open. 2019;9:e024361. doi: 10.1136/bmjopen-2018-024361.
16. InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. Overview: Rheumatoid arthritis. [Updated 2024 Jan 11]. https://www.ncbi.nlm.nih.gov/books/NBK384455/
17. Avramidis GP, Avramidou MP, Papakostas GA. Rheumatoid arthritis diagnosis: Deep learning vs. humane. Appl Sci. 2022;12:10. doi: 10.3390/app12010010
18. 39.Pecani A, Alessandri C, Spinelli FR, Priori R, Riccieri V, Di Franco M, Ceccarelli F, Colasanti T, Pendolino M, Mancini R, et al. Prevalence, sensitivity and specificity of antibodies against carbamylated proteins in a monocentric cohort of patients with rheumatoid arthritis and other autoimmune rheumatic diseases. Arthritis Res Ther. 2016;18:276. doi: 10.1186/s13075-016-1173-0.
19. 40.Savvateeva E, Smoldovskaya O, Feyzkhanova G, Rubina A. Multiple biomarker approach for the diagnosis and therapy of rheumatoid arthritis. Crit Rev Clin Lab Sci. 2021;58:17–28. doi: 10.1080/10408363.2020.1775545.
20..Ahalya RK, Snekhalatha U, Dhanraj V. Automated segmentation and classification of hand thermal images in rheumatoid arthritis using machine learning algorithms: A comparison with quantum machine learning technique. J Therm Biol. 2023;111:103404. doi: 10.1016/j.jtherbio.2022.103404.
21. Nieuwenhuis WP, Krabben A, Stomp W. Evaluation of magnetic resonance imaging-detected tenosynovitis in the hand and wrist in early arthritis. Arthritis Rheumatol. 2015;67:869. doi: 10.1002/art.39000.
22. Bai L Zhang Y Wang P et alImproved diagnosis of rheumatoid arthritis using an artificial neural network Sci Rep 2022129810 https://doi.org/10.1038/s41598-022-13750-9
23. Song X, Lin Q. Genomics, transcriptomics and proteomics to elucidate the pathogenesis of rheumatoid arthritis. Rheumatol Int. 2017;37:1257–1265. doi: 10.1007/s00296-017-3732-3.
24. Liu J, Chen N. A 9 mRNAs-based diagnostic signature for rheumatoid arthritis by integrating bioinformatic analysis and machine-learning. J Orthop Surg Res. 2021;16:44. doi: 10.1186/s13018-020-02180-w.
25. Pratt AG, Swan DC, Richardson S, Wilson G, Hilkens CM, Young DA, Isaacs JD. A CD4 T cell gene signature for early rheumatoid arthritis implicates interleukin 6-mediated STAT3 signalling, particularly in anti-citrullinated peptide antibody-negative disease. Ann Rheum Dis. 2012;71:1374–1381. doi: 10.1136/annrheumdis-2011-200968.
26. Heard BJ, Rosvold JM, Fritzler MJ, El-Gabalawy H, Wiley JP, Krawetz RJ. A computational method to differentiate normal individuals, osteoarthritis and rheumatoid arthritis patients using serum biomarkers. J R Soc Interface. 2014;11:20140428. doi: 10.1098/rsif.2014.0428.
27. Schlereth M, Mutlu MY, Utz J, Bayat S, Heimann T, Qiu J, Ehring C, Liu C, Uder M, Kleyer A, Simon D, Roemer F, Schett G, Breininger K, Fagni F. Deep learning-based classification of erosion, synovitis and osteitis in hand MRI of patients with inflammatory arthritis. RMD Open. 2024 Jun 17;10(2):e004273. doi: 10.1136/rmdopen-2024-004273.
28. Folle L, Bayat S, Kleyer A, Fagni F, Kapsner LA, Schlereth M, Meinderink T, Breininger K, Tascilar K, Krönke G, Uder M, Sticherling M, Bickelhaupt S, Schett G, Maier A, Roemer F, Simon D. Advanced neural networks for classification of MRI in psoriatic arthritis, seronegative, and seropositive rheumatoid arthritis. Rheumatology (Oxford). 2022 Nov 28;61(12):4945-4951. doi: 10.1093/rheumatology/keac197.
29. Mc Ardle A, Kwasnik A, Szentpetery A, Hernandez B, Parnell A, de Jager W, de Roock S, FitzGerald O, Pennington SR. Identification and Evaluation of Serum Protein Biomarkers That Differentiate Psoriatic Arthritis From Rheumatoid Arthritis. Arthritis Rheumatol. 2022 Jan;74(1):81-91. doi: 10.1002/art.41899.
30. Rychkov D, Neely J, Oskotsky T, Yu S, Perlmutter N, Nititham J, Carvidi A, Krueger M, Gross A, Criswell LA, Ashouri JF, Sirota M. Cross-Tissue Transcriptomic Analysis Leveraging Machine Learning Approaches Identifies New Biomarkers for Rheumatoid Arthritis. Front Immunol. 2021 Jun 8;12:638066. doi: 10.3389/fimmu.2021.638066.
31. Fernandez-Lazaro CI, García-González JM, Adams DP. Adherence to treatment and related factors among patients with chronic conditions in primary care: a cross-sectional study. BMC Fam Pract. 2019;20:132. doi: 10.1186/s12875-019-1019-3.
32. Gossec L, Guyard F, Leroy D. Detection of Flares by Decrease in Physical Activity, Collected Using Wearable Activity Trackers in Rheumatoid Arthritis or Axial Spondyloarthritis: An Application of Machine Learning Analyses in Rheumatology. Arthritis Care Res (Hoboken) 2019;71:1336. doi: 10.1002/acr.23768.
33. Pers YM, Valsecchi V, Mura T. A randomized prospective open-label controlled trial comparing the performance of a connected monitoring interface versus physical routine monitoring in patients with rheumatoid arthritis. Rheumatology (Oxford) 2021;60:1659. doi: 10.1093/rheumatology/keaa462.
34. Maninis, KK, Pont-Tuset, J, Arbeláez, P, and van Gool, L Deep retinal image understanding. International conference on medical image computing and computer-assisted intervention. Cham: Springer. (2016). DOI:10.1007/978-3-319-46723-8_17.
35. Fiorentino, MC, Cipolletta, E, Filippucci, E, Grassi, W, Frontoni, E, and Moccia, S. A deep-learning framework for metacarpal-head cartilage-thickness estimation in ultrasound rheumatological images. Comput Biol Med. (2022) 141:105117. doi: 10.1016/j.compbiomed.2021.105117
36. van der Heijde, DMFM, Dankert, T, Nieman, F, Rau, R, and Boers, M. Reliability and sensitivity to change of a simplification of the sharp/van der Heijde radiological assessment in rheumatoid arthritis. Rheumatology. (1999) 38:941–7. doi: 10.1093/rheumatology/38.10.941
37. Hirano, T, Nishide, M, Nonaka, N, Seita, J, Ebina, K, Sakurada, K, et al. Development and validation of a deep-learning model for scoring of radiographic finger joint destruction in rheumatoid arthritis. Rheumatol Adv Pract. (2019) 3:rkz047. doi: 10.1093/rap/rkz047
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zuzanna Kawa, Maria Kasprzak, Aleksandra Jędrzejewska, Aleksandra Jureczko, Klaudia Kleczaj; Valentyna Levadna; Damian Osiński; Julia Jaworowska; Julia Kanarszczuk, Gabriela Babiarz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 110
Number of citations: 0