The Use of Artificial Intelligence in the Diagnosis of Eye Diseases - a Review
DOI:
https://doi.org/10.12775/QS.2025.45.66568Keywords
glaucoma, cataract, diabetic retinopathy, age-related macular degeneration, artificial intelligence, machine learning, deep learningAbstract
Introduction:
This review article consolidates current knowledge on the application of artificial intelligence (AI) in the diagnostic and therapeutic processes of ocular diseases, focusing on glaucoma, diabetic retinopathy (DR), cataract, and age-related macular degeneration (AMD). It also discusses the limitations of AI algorithms and highlights potential areas for future clinical research.
Materials and methods:
A literature review was conducted using the PubMed and Google Scholar databases with the following keywords: "glaucoma," "cataract," "diabetic retinopathy," "age-related macular degeneration," "artificial intelligence," "machine learning," and "deep learning."
Summary:
Diseases such as glaucoma, cataract, DR, and AMD significantly impact patients' quality of life. Factors like the growing number of patients, limited access to specialists, and time-consuming diagnostics have increased interest in AI-based tools. In recent years, machine learning (ML) and deep learning (DL) have contributed to faster, more objective diagnostics. In ophthalmology, AI enables automatic analysis of fundus images, prediction of disease progression, and remote monitoring. These solutions support early detection, individualized treatment plans, and improved access to care. AI is particularly promising in screening programs for DR, analyzing optic nerve structures in glaucoma, and enhancing precision in cataract surgery and AMD progression monitoring.
Conclusions:
AI applications in ophthalmology have the potential to improve early diagnosis, optimize treatment, and ease the burden on clinicians. Despite this progress, challenges remain—such as the opaque decision-making of AI systems, ethical issues, and integration into routine clinical workflows. Addressing these barriers will be key to realizing the full benefits of AI and guiding future research in this rapidly evolving field.
References
1.Amoretti, M., Amsler, C., Bonomi, G. et al. Production and detection of cold antihydrogen atoms. Nature 419, 456–459 (2002). https://doi.org/10.1038/nature01096
2.K. Zhang, X. Liu, J. Shen, Z. Li, Y. Sang, X. Wu, Y. Zha, W. Liang, C. Wang, K. Wang, et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography Cell, 182 (2020), p. 1360
3.Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers. 2021 Aug;25(3):1315-1360. doi: 10.1007/s11030-021-10217-3. Epub 2021 Apr 12. PMID: 33844136; PMCID: PMC8040371.
4.Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017 Apr;69S:S36-S40. doi: 10.1016/j.metabol.2017.01.011. Epub 2017 Jan 11. PMID: 28126242.
5.Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet. 2023 Nov 11;402(10414):1788-1801. doi: 10.1016/S0140-6736(23)01289-8. Epub 2023 Sep 21. PMID: 37742700.
6.Martin KR, Mansouri K, Weinreb RN, et al. Use of Machine Learning on Contact Lens Sensor-Derived Parameters for the Diagnosis of Primary Open-angle Glaucoma. Am J Ophthalmol. 2018;194:46-53. doi:10.1016/j.ajo.2018.07.005
7.Shean R, Yu N, Guntipally S, Nguyen V, He X, Duan S, Gokoffski K, Zhu Y, Xu B. Advances and Challenges in Wearable Glaucoma Diagnostics and Therapeutics. Bioengineering (Basel). 2024 Jan 30;11(2):138. doi: 10.3390/bioengineering11020138. PMID: 38391624; PMCID: PMC10886103.
8.Bragança CP, Torres JM, Soares CPA, Macedo LO. Detection of Glaucoma on Fundus Images Using Deep Learning on a New Image Set Obtained with a Smartphone and Handheld Ophthalmoscope. Healthcare (Basel). 2022 Nov 22;10(12):2345. doi: 10.3390/healthcare10122345. PMID: 36553869; PMCID: PMC9778370.
9.AlShawabkeh M, AlRyalat SA, Al Bdour M, Alni'mat A, Al-Akhras M. The utilization of artificial intelligence in glaucoma: diagnosis versus screening. Front Ophthalmol (Lausanne). 2024 Mar 6;4:1368081. doi: 10.3389/fopht.2024.1368081. PMID: 38984126; PMCID: PMC11182276.
10.Li Z, He Y, Keel S, Meng W, Chang RT, He M. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018;125(8):1199-1206. doi:10.1016/j.ophtha.2018.01.023
11.Alauddin Bhuiyan, Arun Govindaiah, R. Theodore Smith, An Artificial-Intelligence-and Telemedicine-Based Screening Tool to identify Glaucoma Suspects from Color fundus Imaging, Journal of Oftalmology, 2021 http://onlinelibrary.wiley.com/doi/full/10.1155/2021/6694784
12.Al-Aswad LA, Kapoor R, Chu CK, et al. Evaluation of a Deep Learning System for Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. J Glaucoma. Published online June 21, 2019. doi:10.1097/IJG.0000000000001319
13.Masumoto H, Tabuchi H, Nakakura S, Ishitobi N, Miki M, Enno H. Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity. J Glaucoma. 2018 Jul;27(7):647-652. doi: 10.1097/IJG.0000000000000988. PMID: 29781835.
14.Piatti, A., Romeo, F., Manti, R. et al. Feasibility and accuracy of the screening for diabetic retinopathy using a fundus camera and an artificial intelligence pre-evaluation application. Acta Diabetol 61, 63–68 (2024)
15.Luisa Ribeiro, Carlos Manta Oliveira, Catarina Neves, João Diogo Ramos, Hélder Ferreira, José Cunha-Vaz; Screening for Diabetic Retinopathy in the Central Region of Portugal. Added Value of Automated ‘Disease/No Disease' Grading. Ophthalmologica 1 February 2015; 233 (2): 96–103. https://doi.org/10.1159/000368426
16.Goldstein J, Weitzman D, Lemerond M, Jones A. Determinants for scalable adoption of autonomous AI in the detection of diabetic eye disease in diverse practice types: key best practices learned through collection of real-world data. Front Digit Health. 2023 May 18;5:1004130. doi: 10.3389/fdgth.2023.1004130. PMID: 37274764; PMCID: PMC10232822.
17.Verbraak FD, Abramoff MD, Bausch GCF, Klaver C, Nijpels G, Schlingemann RO, van der Heijden AA. Diagnostic Accuracy of a Device for the Automated Detection of Diabetic Retinopathy in a Primary Care Setting. Diabetes Care. 2019 Apr;42(4):651-656. doi: 10.2337/dc18-0148. Epub 2019 Feb 14. PMID: 30765436.
18.Vujosevic S, Limoli C, Nucci P. Novel artificial intelligence for diabetic retinopathy and diabetic macular edema: what is new in 2024? Curr Opin Ophthalmol. 2024 Nov 1;35(6):472-479. doi: 10.1097/ICU.0000000000001084. Epub 2024 Sep 9. PMID: 39259647; PMCID: PMC11426980.
19.Lupidi, M., Danieli, L., Fruttini, D. et al. Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting. Acta Diabetol 60, 1083–1088 (2023)
20.Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014 Feb;2(2):e106–16.
21.Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmol. 2009 Jan;116(1):57–65.e5.
22.Sadda SR, Tuomi LL, Ding B, et al. Macular atrophy in the HARBOR study for neovascular age-related macular degeneration. Ophthalmol. 2018 Jun;125(6):878–886.
23.Niu S, de Sisternes L, Chen Q, et al. Fully automated prediction of geographic atrophy growth using quantitative spectral-domain optical coherence tomography biomarkers. Ophthalmol. 2016 Aug;123(8):1737–1750.
24.Machine Learning Can Predict Anti–VEGF Treatment Demand in a Treat-and-Extend Regimen for Patients with Neovascular AMD, DME, and RVO Associated Macular Edema, Ophthalmology Retina,Volume 5, Issue 7,2021,Pages 604-624,ISSN 2468-6530,
25. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Silvester A, Stevens GA, Tahhan N, Wong TY, Taylor HR; Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017 Dec;5(12):e1221-e1234. doi: 10.1016/S2214-109X(17)30393-5. Epub 2017 Oct 11. PMID: 29032195.
26.Fu J, Zhou X, Mei G. Internet Digital Economy Development Forecast Based on Artificial Intelligence and SVM-KNN Network Detection. Comput Intell Neurosci. 2022 Jun 20;2022:5792694. doi: 10.1155/2022/5792694. PMID: 35769271; PMCID: PMC9236839.
27.Lee J, Hong H, Song JM, Yeom E. Neural network ensemble model for prediction of erythrocyte sedimentation rate (ESR) using partial least squares regression. Sci Rep. 2022 Nov 15;12(1):19618. doi: 10.1038/s41598-022-23174-0. PMID: 36379969; PMCID: PMC9666533.
28.Sramka M, Slovak M, Tuckova J, Stodulka P. Improving clinical refractive results of cataract surgery by machine learning. PeerJ. 2019 Jul 2;7:e7202. doi: 10.7717/peerj.7202. PMID: 31304064; PMCID: PMC6611496.
29.Lin D, Chen J, Lin Z, Li X, Zhang K, Wu X, Liu Z, Huang J, Li J, Zhu Y, Chen C, Zhao L, Xiang Y, Guo C, Wang L, Liu Y, Chen W, Lin H. A practical model for the identification of congenital cataracts using machine learning. EBioMedicine. 2020 Jan;51:102621. doi: 10.1016/j.ebiom.2019.102621. Epub 2020 Jan 3. PMID: 31901869; PMCID: PMC6948173.
30.Bhartiya S. Glaucoma Screening: Is AI the Answer? J Curr Glaucoma Pract. 2022 May-Aug;16(2):71-73. doi: 10.5005/jp-journals-10078-1380. PMID: 36128081; PMCID: PMC9452706.
31.AlRyalat SA, Singh P, Kalpathy-Cramer J, Kahook MY. Artificial Intelligence and Glaucoma: Going Back to Basics. Clin Ophthalmol. 2023 May 31;17:1525-1530. doi: 10.2147/OPTH.S410905. PMID: 37284059; PMCID: PMC10239633.
32.Li, F. et al. The AI revolution in glaucoma: Bridging challenges with opportunities. Progr. Retin. Eye Res. https://doi.org/10.1016/j.preteyeres.2024.101291(2024).
33.Li JO, Liu H, Ting DSJ, Jeon S, Chan RVP, Kim JE, Sim DA, Thomas PBM, Lin H, Chen Y, Sakomoto T, Loewenstein A, Lam DSC, Pasquale LR, Wong TY, Lam LA, Ting DSW. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Prog Retin Eye Res. 2021 May;82:100900. doi: 10.1016/j.preteyeres.2020.100900. Epub 2020 Sep 6. PMID: 32898686; PMCID: PMC7474840.
34.Mursch-Edlmayr AS, Ng WS, Diniz-Filho A, Sousa DC, Arnold L, Schlenker MB, Duenas-Angeles K, Keane PA, Crowston JG, Jayaram H. Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Transl Vis Sci Technol. 2020 Oct 15;9(2):55. doi:
35.Keskinbora K, Güven F. Artificial Intelligence and Ophthalmology. Turk J Ophthalmol. 2020 Mar 5;50(1):37-43. doi: 10.4274/tjo.galenos.2020.78989. PMID: 32167262; PMCID: PMC7086
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Marcin Siwik, Julia Waszak, Urszula Mazur, Paulina Ogonowska, Jakub Bazarewicz, Cezary Kubuj, Daniel Dmowski, Anna Michalska, Michał Świda, Grzegorz Adaśko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 114
Number of citations: 0