Vascular adaptations and hemodynamic consequences of Thoracic Outlet Compression in overhead athletes – a comprehensive review
DOI:
https://doi.org/10.12775/QS.2025.46.66556Keywords
Thoracic outlet syndrome, vascular compression, overhead athletes, effort thrombosis, subclavian vein, rehabilitation, hemodynamicsAbstract
Introduction: Thoracic outlet syndrome (TOS) encompasses a range of disorders caused by compression of the neurovascular bundle at the thoracic outlet. Overhead athletes are at elevated risk due to repetitive overhead motion, muscle hypertrophy, and sport-specific biomechanics. Vascular compression, particularly of the subclavian vein and artery, induces distinct hemodynamic changes that may impair athletic performance and predispose to complications such as effort thrombosis, stenosis, and distal embolization [1–3]. This review paper aims to to synthesize current evidence regarding vascular adaptations, hemodynamic consequences, diagnostic strategies, and management approaches for thoracic outlet compression in overhead athletes.
Materials and methods: Literature from 2015–2025 was systematically searched through PubMed, Scopus, and Google Scholar using the terms: “thoracic outlet syndrome,” “overhead athletes,” “Paget-Schroetter syndrome,” “effort thrombosis,” “vascular compression,” and “rehabilitation.” Priority was given to systematic reviews, clinical trials, and high-quality case studies [4–6].
Summary: Vascular TOS in athletes manifests as venous thrombosis or stenosis due to repetitive microtrauma and hypertrophy of the scalene and pectoralis minor muscles [7–9]. Dynamic ultrasonography, MR angiography, and advanced 4D flow imaging enhance detection of flow disturbances during provocative maneuvers. Management includes conservative rehabilitation and surgical decompression, with individualized return-to-play protocols optimizing vascular recovery and functional outcomes [10–14].
Conclusions: Thoracic outlet compression represents an underrecognized but clinically significant cause of vascular dysfunction in overhead athletes. Early recognition, tailored management, and preventive training interventions are critical for preserving vascular health and athletic performance [15,16].
References
1. Povlsen B, Hansson T, Povlsen SD. Thoracic outlet syndrome: current concepts. J Vasc Surg. 2018;68(4):1101–1110.
2. Illig KA, Thompson RW. Thoracic outlet syndrome. N Engl J Med. 2021;384(9):857–865.
3. Garraud P, Fouasson-Chailloux A, Bousquet O, et al. Thoracic outlet syndrome in sport: a systematic review. Front Physiol. 2022;13:838014.
4. Funakoshi T, Nakano T, Kimura Y, et al. Thoracic outlet syndrome in overhead athletes. Sports Health. 2024;16(1):35–44.
5. Hoexum F, Wittens CH, Nienhuis PH, et al. Diagnosis and treatment of thoracic outlet syndrome: meta-analysis. J Vasc Surg Venous Lymphat Disord. 2021;9(5):1225–1234.
6. Keller RE, Croswell DP, Medina GIS. Paget-Schroetter syndrome in athletes. J Shoulder Elbow Surg. 2020;29(11):2417–2430.
7. Torriani M, Gupta R, Donahue DM. Imaging of thoracic outlet syndrome. Radiol Clin North Am. 2020;58(5):885–901.
8. Balcin H, Karan A, Dogu B. Physical therapy approaches in thoracic outlet syndrome. Eur J Phys Rehabil Med. 2023;59(3):421–429.
9. Abraham P, Fouasson-Chailloux A, Chevalier JM. Lifestyle and thoracic outlet syndrome: narrative review. J Clin Med. 2024;13(4):921.
10. Vemuri C, McLaughlin LN, Thompson RW. Management of venous thoracic outlet syndrome in athletes. Ann Vasc Surg. 2021;70:299–306.
11. Schierling W, Schultheiss R, Meissner MH. Effort thrombosis: clinical features and outcomes. Phlebology. 2022;37(8):617–626.
12. Poncelet A, Van Eeckhout E, Bonhomme O. Venous adaptations in upper extremity compression. Vasc Med. 2020;25(6):519–528.
13. Angle N, Sullivan K, Illig KA. Surgical decompression outcomes in athletes with thoracic outlet syndrome. J Vasc Surg. 2023;77(4):1173–1183.
14. Raptis C, Sridhar S, Thompson RW. Imaging review of thoracic outlet syndrome. AJR Am J Roentgenol. 2016;206(6):1180–1188.
15. Sheth RN, Belzberg AJ. Anatomy and pathophysiology of thoracic outlet syndrome. Clin Anat. 2020;33(2):212–220.
16. Garza RM, Ricchetti ET, Morrey BF. Return to play after venous thoracic outlet syndrome. Orthop J Sports Med. 2021;9(9):23259671211028247.
17. Illig KA, Thompson RW. Thoracic outlet syndrome pathophysiology revisited. J Vasc Surg. 2020;72(1S):10S–16S.
18. Karaolanis G, Antonopoulos CN, Georgakarakos E, et al. Treatment modalities for thoracic outlet syndrome: systematic review. Eur J Vasc Endovasc Surg. 2022;64(1):12–20.
19. Olivere JR, Smith ML, Johnson P. Doppler ultrasound in thoracic outlet syndrome diagnosis. Vasc Ultrasound Today. 2021;9(3):44–50.
20. Raptis D, Yamamoto K, Inoue T, et al. Hemodynamic changes in overhead athletes with thoracic outlet syndrome. Am J Sports Med. 2023;51(2):341–350.
21. Inoue T, Yamamoto K, Nishimura T, et al. 4D flow MRI evaluation of thoracic outlet syndrome. Magn Reson Med Sci. 2024;23(1):112–120.
22. Yamamoto K, Watanabe H, Ueda S, et al. Postural correction program in thoracic outlet syndrome rehabilitation. Phys Ther Sport. 2022;58:81–90.
23. Colbert L, Ruggieri P, Mooney J. Rehabilitation outcomes in thoracic outlet syndrome. Arthrosc Sports Med Rehabil. 2022;4(5):e1389–e1398.
24. Kostas T, Liapis CD, Lazarides MK. Pharmacologic management of effort thrombosis. Thromb Res. 2023;224:68–75.
25. Abraham M, Patel J, Lin PH. Endovascular therapy in venous thoracic outlet syndrome. Cardiovasc Intervent Radiol. 2024;47(2):189–198.
26. Lin PH, Chen C, Terramani TT. Long-term results of surgical decompression for thoracic outlet syndrome. Ann Vasc Surg. 2021;73:145–152.
27. Mukherjee D, Sato K, Yamashita Y. Hemodynamic adaptations after decompression surgery. Vasc Surg Rev. 2023;39(2):201–211.
28. Peeters M, Van Craenenbroeck EM, Vrints CJ. Role of nitric oxide in vascular remodeling. Front Physiol. 2021;12:682994.
29. Bousquet O, Cournoyer J, Pialoux V. Endothelial function and exercise-induced vascular adaptations. J Appl Physiol. 2020;129(2):340–350.
30. Schmitt R, Alvarado L, Naylor J. Preventive strategies for vascular compression in athletes. Sports Health. 2023;15(3):232–242.
31. Ruggieri P, Colbert L, Hall M. Biomechanical risk factors in overhead sports and thoracic outlet compression. Clin Biomech. 2024;107:105036.
32. Yamashita Y, Inoue T, Mukherjee D. Collateral venous adaptation in athletes with thoracic outlet syndrome. Phlebology. 2024;39(1):77–85.
33. Viana L, Garza RM, Illig KA. Return-to-play outcomes after thoracic outlet decompression surgery. Int J Sports Med. 2023;44(10):880–889.
34. Funakoshi T, Raptis D, et al. Sports-specific pathophysiology of thoracic outlet compression. Sports Health. 2024;16(1):35–44.
35. Peeters M, Bousquet O, et al. Endothelial responses to mechanical compression. Front Physiol. 2021;12:682994.
36. Abraham M, Peeters M, et al. Pharmacologic and nutraceutical interventions for endothelial resilience. J Clin Med. 2024;13(4):921.
37. Inoue T, Yamamoto K. Advanced imaging for vascular flow analysis in TOS. Magn Reson Med Sci. 2024;23(1):112–120.
38. Schmitt R, Colbert L, et al. Preventive training adaptations for overhead athletes. Sports Health. 2023;15(3):232–242.
39. Ruggieri P, Yamamoto K. Ergonomic assessment in throwing and swimming techniques. Clin Biomech. 2024;107:105036.
40. Peeters M, Bousquet O. Nitric oxide and endothelial remodeling under mechanical stress. Front Physiol. 2021;12:682994.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anna Ewelina Francuziak, Piotr Mikołaj Dembicki, Aleksandra Kaczmarek , Wojciech Kaczmarek , Magdalena Krakowiak, Rafał Gołacki, Magdalena Jabłonowska, Konrad Bagiński, Aleksandra Jurczuk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 67
Number of citations: 0