The Impact of Gene Therapy on the Treatment of Hypertrophic Cardiomyopathy – A Literature Review
DOI:
https://doi.org/10.12775/QS.2025.45.66525Keywords
hypertrophic cardiomiopathy (HCM), genetic HCM, miosin binding protein C3 (MYBPC3), gene therapy, CRISPR/Cas9, adeno-associated virus (AAV), transgene expressionclinical trials in cardiomyopathiesAbstract
Introduction: Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disorder. HCM is defined by increased left ventricular (LV) wall thickness or mass not attributable solely to abnormal loading conditions. It is chronic, heterogeneous in terms of its clinical presentation, ranging from absence of symptoms in fenotype to severe left ventricular hypertrophy, sudden cardiac death and end-stage heart failure at young age.
Aim of the Study: This study aims to explore the potential of gene therapy as a novel therapeutic approach for HCM, including the advancements, ongoing clinical trials, and associated challenges.
Materials and methods: More than 55 articles were analysed. They were found using the PubMed search engine focusing on studies investigating gene therapy techniques, including gene replacement, allele-specific silencing, and genome editing with CRISPR/Cas9.
Results: Gene therapy has shown promising results in preclinical models. Early clinical studies are currently underway, aiming to assess the safety and efficacy of gene therapy on humans. Additionally, techniques such as allele-specific silencing and CRISPR-Cas9 present new opportunities in gene therapy. Despite the successes observed in preclinical research, it is crucial to evaluate the safety profile on humans and to address challenges such as off-target effects and the immune response to the introduced molecules.
Conclusions: Gene therapy is emerging as a promising innovation in the treatment of HCM, enabling targeted correction of the genetic causes of the disease. Despite recent advancements, further long-term studies are still necessary to confirm its safety, efficacy, and potential for broad application before it can become a standard therapeutic option.
References
Ahluwalia M, Ho CY. Cardiovascular genetics: the role of genetic testing in diagnosis and management of patients with hypertrophic cardiomyopathy. Heart [Internet]. 2021 Feb 1;107(3):183. Available from: http://heart.bmj.com/content/107/3/183.abstract
2. Huke S. Linking myofilaments to sudden cardiac death: recent advances. J Physiol [Internet]. 2017 Jun 15 [cited 2025 Jan 15];595(12):3939. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5471415/
3. Maron BJ, Mathenge R, Casey SA, Poliac LC, Longe TF. Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol. 1999 May 1;33(6):1590–5.
4. Braunwald E. Hypertrophic Cardiomyopathy: A Brief Overview. Am J Cardiol [Internet]. 2024 Feb 1 [cited 2025 Jan 15];212S:S1–3. Available from: https://pubmed.ncbi.nlm.nih.gov/38368032/
5. Östman-Smith I, Sjöberg G, Rydberg A, Larsson P, Fernlund E. Predictors of risk for sudden death in childhood hypertrophic cardiomyopathy: the importance of the ECG risk score. Open Heart [Internet]. 2017 Oct 1 [cited 2025 Jan 15];4(2):e000658. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC5663271/
6. Rapezzi C, Arbustini E, Caforio ALP, Charron P, Gimeno-Blanes J, Heliö T, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur Heart J [Internet]. 2013 May 21 [cited 2025 Jan 15];34(19):1448–58. Available from: https://pubmed.ncbi.nlm.nih.gov/23211230/
7. Oki T, Fukuda N, Iuchi A, Tabata T, Tanimoto M, Manabe K, et al. Transesophageal echocardiographic evaluation of mitral regurgitation in hypertrophic cardiomyopathy: contributions of eccentric left ventricular hypertrophy and related abnormalities of the mitral complex. J Am Soc Echocardiogr [Internet]. 1995 [cited 2025 Jan 15];8(4):503–10. Available from: https://pubmed.ncbi.nlm.nih.gov/7546787/
8. Rudolph A, Abdel-Aty H, Bohl S, Boyé P, Zagrosek A, Dietz R, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol [Internet]. 2009 Jan 20 [cited 2025 Jan 15];53(3):284–91. Available from: https://pubmed.ncbi.nlm.nih.gov/19147047/
9. Kampmann C, Emschermann T, Stopfkuchen H, Wiethoff CM, Wenzel A, Stolz G, et al. Normal values of M mode echocardiographic measurements of more than 2000 healthy infants and children in central Europe. Heart [Internet]. 2000 [cited 2025 Jan 15];83(6):667–72. Available from: https://pubmed.ncbi.nlm.nih.gov/10814626/
10. Sherrid M V., Shetty A, Winson G, Kim B, Musat D, Alviar CL, et al. Treatment of obstructive hypertrophic cardiomyopathy symptoms and gradient resistant to first-line therapy with β-blockade or verapamil. Circ Heart Fail [Internet]. 2013 Jul [cited 2025 Jan 15];6(4):694–702. Available from: https://pubmed.ncbi.nlm.nih.gov/23704138/
11. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur Heart J [Internet]. 2008 Jan 1 [cited 2025 Jan 7];29(2):270–6. Available from: https://dx.doi.org/10.1093/eurheartj/ehm342
12. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther [Internet]. 2021 Dec 1 [cited 2025 Jan 7];6(1):53. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7868676/
13. Paratz ED, Mundisugih J, Rowe SJ, Kizana E, Semsarian C. Gene Therapy in Cardiology: Is a Cure for Hypertrophic Cardiomyopathy on the Horizon? Can J Cardiol [Internet]. 2024 May 1 [cited 2025 Jan 7];40(5):777–88. Available from: https://pubmed.ncbi.nlm.nih.gov/38013066/
14. Samulski RJ, Muzyczka N. AAV-Mediated Gene Therapy for Research and Therapeutic Purposes. Annu Rev Virol [Internet]. 2014 Sep 29 [cited 2025 Jan 7];1(1):427–51. Available from: https://pubmed.ncbi.nlm.nih.gov/26958729/
15. Mearini G, Stimpel D, Geertz B, Weinberger F, Krämer E, Schlossarek S, et al. Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nature Communications 2014 5:1 [Internet]. 2014 Dec 2 [cited 2025 Jan 7];5(1):1–10. Available from: https://www.nature.com/articles/ncomms6515
16. Monteiro da Rocha A, Guerrero-Serna G, Helms A, Luzod C, Mironov S, Russell M, et al. Deficient cMyBP-C protein expression during cardiomyocyte differentiation underlies human hypertrophic cardiomyopathy cellular phenotypes in disease specific human ES cell derived cardiomyocytes. J Mol Cell Cardiol [Internet]. 2016 Oct 1 [cited 2025 Jan 7];99:197–206. Available from: https://pubmed.ncbi.nlm.nih.gov/27620334/
17. Sheridan C. Genetic medicines aim straight for the heart. Nat Biotechnol [Internet]. 2023 Apr 1 [cited 2025 Jan 7];41(4):435–7. Available from: https://pubmed.ncbi.nlm.nih.gov/37016163/
18. ClinicalTrials.gov. (b. d.). ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05836259.
19. Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature [Internet]. 2009 Jan 22 [cited 2025 Jan 7];457(7228):426–33. Available from: https://pubmed.ncbi.nlm.nih.gov/19158789/
20. Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, et al. Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med. 2013 Jul;5(7):1128–45.
21. Jiang J, Wakimoto H, Seidman JG, Seidman CE. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science [Internet]. 2013 [cited 2025 Jan 7];342(6154):111–4. Available from: https://pubmed.ncbi.nlm.nih.gov/24092743/
22. Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther [Internet]. 2016 Mar 1 [cited 2025 Jan 7];24(3):430–46. Available from: https://pubmed.ncbi.nlm.nih.gov/26755333/
23. Redman M, King A, Watson C, King D. What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed [Internet]. 2016 Aug 1 [cited 2025 Jan 7];101(4):213. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4975809/
24. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature [Internet]. 2017 Aug 24 [cited 2025 Jan 7];548(7668):413–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28783728/
25. Nie J, Han Y, Jin Z, Hang W, Shu H, Wen Z, et al. Homology-directed repair of an MYBPC3 gene mutation in a rat model of hypertrophic cardiomyopathy. Gene Ther [Internet]. 2023 Jun 1 [cited 2025 Jan 7];30(6):520–7. Available from: https://pubmed.ncbi.nlm.nih.gov/36765144/
26. Chai AC, Cui M, Chemello F, Li H, Chen K, Tan W, et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med [Internet]. 2023 Feb 1 [cited 2025 Jan 7];29(2):401–11. Available from: https://pubmed.ncbi.nlm.nih.gov/36797478/
27. Yang P, Lou Y, Geng Z, Guo Z, Wu S, Li Y, et al. Allele-Specific Suppression of Variant MHC With High-Precision RNA Nuclease CRISPR-Cas13d Prevents Hypertrophic Cardiomyopathy. Circulation [Internet]. 2024 Jul 23 [cited 2025 Jan 8];150(4):283–98. Available from: https://pubmed.ncbi.nlm.nih.gov/38752340/
28. Helms AS, Alvarado FJ, Yob J, Tang VT, Pagani F, Russell MW, et al. Genotype-Dependent and -Independent Calcium Signaling Dysregulation in Human Hypertrophic Cardiomyopathy. Circulation [Internet]. 2016 Nov 29 [cited 2025 Jan 7];134(22):1738–48. Available from: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.115.020086
29. Coppini R, Ferrantini C, Mugelli A, Poggesi C, Cerbai E. Altered Ca2+ and Na+ Homeostasis in Human Hypertrophic Cardiomyopathy: Implications for Arrhythmogenesis. Front Physiol [Internet]. 2018 Oct 16 [cited 2025 Jan 15];9(OCT):1391. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6215954/
30. Yadav S, Yuan CC, Kazmierczak K, Liang J, Huang W, Takeuchi LM, et al. Therapeutic potential of AAV9-S15D-RLC gene delivery in humanized MYL2 mouse model of HCM. J Mol Med (Berl) [Internet]. 2019 Jul 1 [cited 2025 Jan 7];97(7):1033–47. Available from: https://pubmed.ncbi.nlm.nih.gov/31101927/
31. Lay FD, Kelly TK, Jones PA. Nucleosome Occupancy and Methylome Sequencing (NOMe-seq). Methods in Molecular Biology [Internet]. 2018 [cited 2025 Jan 12];1708:267–84. Available from: https://link.springer.com/protocol/10.1007/978-1-4939-7481-8_14
32. Gao J, Liu M, Lu M, Zheng Y, Wang Y, Yang J, et al. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell [Internet]. 2024 Nov 1 [cited 2025 Jan 12];15(11):796. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11528543/
33. Luo Y. Refining CRISPR-based genome and epigenome editing off-targets. Cell Biol Toxicol [Internet]. 2019 Aug 1 [cited 2025 Jan 7];35(4):281–3. Available from: https://pubmed.ncbi.nlm.nih.gov/31227932/
34. Kim S, Koo T, Jee HG, Cho HY, Lee G, Lim DG, et al. CRISPR RNAs trigger innate immune responses in human cells. Genome Res [Internet]. 2018 Mar 1 [cited 2025 Jan 7];28(3):367–73. Available from: https://pubmed.ncbi.nlm.nih.gov/29472270/
35. Strong A. CRISPR gene editing therapies for hypertrophic cardiomyopathy. Nat Med [Internet]. 2023 Feb 1 [cited 2025 Jan 7];29(2):305. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9969544/
36. German DM, Mitalipov S, Mishra A, Kaul S. Therapeutic Genome Editing in Cardiovascular Diseases. JACC Basic Transl Sci [Internet]. 2019 Feb 1 [cited 2025 Jan 7];4(1):122–31. Available from: https://pubmed.ncbi.nlm.nih.gov/30847427/
37. Ayanoğlu FB, Elçİn AE, Elçİn YM. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk J Biol [Internet]. 2020 [cited 2025 Jan 7];44(2):110–20. Available from: https://pubmed.ncbi.nlm.nih.gov/32256147/
38. Ingles J, Johnson R, Sarina T, Yeates L, Burns C, Gray B, et al. Social determinants of health in the setting of hypertrophic cardiomyopathy. Int J Cardiol [Internet]. 2015 [cited 2025 Jan 7];184(1):743–9. Available from: https://pubmed.ncbi.nlm.nih.gov/25827935/
39. Polak TB, Bunnik EM. Financial considerations in expanded access policy for gene therapies: A tough nut to crack? Molecular Therapy [Internet]. 2021 Jun 2 [cited 2025 Jan 7];29(6):1936. Available from: http://www.cell.com/article/S1525001621002185/fulltext
40. Noone D, Coffin D, Pierce GF. Reimbursing the value of gene therapy care in an era of uncertainty. Haemophilia [Internet]. 2021 Jan 1 [cited 2025 Jan 7];27(1):12–8. Available from: https://pubmed.ncbi.nlm.nih.gov/33245824/
41. Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum Gene Ther Methods [Internet]. 2013 Apr 1 [cited 2025 Jan 7];24(2):59–67. Available from: https://pubmed.ncbi.nlm.nih.gov/23442094/
42. Ertl HCJ. Immunogenicity and toxicity of AAV gene therapy. Front Immunol [Internet]. 2022 Aug 12 [cited 2025 Jan 7];13. Available from: https://pubmed.ncbi.nlm.nih.gov/36032092/
43. Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik’s cube of human gene therapy. Mol Ther [Internet]. 2022 Dec 7 [cited 2025 Jan 7];30(12):3515–41. Available from: https://pubmed.ncbi.nlm.nih.gov/36203359/
44. Philippidis A. Novartis Confirms Deaths of Two Patients Treated with Gene Therapy Zolgensma. Hum Gene Ther [Internet]. 2022 Sep 1 [cited 2025 Jan 7];33(17–18):842–4. Available from: https://pubmed.ncbi.nlm.nih.gov/36125439/
45. Lek A, Wong B, Keeler A, Blackwood M, Ma K, Huang S, et al. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne’s Muscular Dystrophy. New England Journal of Medicine. 2023 Sep 28;389(13):1203–10.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Lesiczka-Fedoryj, Anna Walczak, Silvia Ciraolo, Zuzanna Kościuszko, Katarzyna Kurza, Matylda Czerwonka, Julianna Podolec, Agnieszka Kulczycka–Rowicka, Joanna Wojda, Adam Sobiński

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 109
Number of citations: 0