Effects of systemic and local cryotherapy on the course of neurodegenerative and autoimmune diseases - A Literature Review
DOI:
https://doi.org/10.12775/QS.2025.45.66522Keywords
cryotherapy, whole-body cooling, Local Cryotherapy, neurodegenerative diseases, autoimmune diseasesAbstract
Introduction and Purpose:
Cryotherapy, both systemic and local, is increasingly recognized as a complementary method in the treatment of inflammatory, autoimmune, and neurodegenerative diseases. This review aims to summarize current knowledge on the mechanisms of cryotherapy and its impact on clinical outcomes and biomarkers in selected chronic conditions.
Description of state of knowledge
Cryotherapy exerts anti-inflammatory effects by lowering levels of cytokines such as TNF-α, IL-1β, and IL-6. It also improves microcirculation, modulates hormonal responses and neurotransmission, contributing to pain relief, reduced fatigue, less joint stiffness, and improved quality of life. However, possible side effects include frostbite, dizziness, cold-induced urticaria, and transient hypertension. Contraindications include cardiovascular diseases, cryoglobulinaemia, and cold hypersensitivity.
Methods:
The literature review included studies from 2000–2025 in databases such as PubMed, Scopus, Web of Science, and Google Scholar. Clinical trials, systematic reviews, and meta-analyses evaluating the efficacy and safety of WBC and LBC were analysed.
Conclusions:
Cryotherapy is a valuable adjunctive tool for the treatment of diseases with a chronic course and inflammatory components, but its use should be preceded by detailed clinical assessment and patient qualification. Further randomised clinical trials are needed to establish optimal therapeutic protocols and an accurate safety profile.
References
1. Rymaszewska J, Lion KM, Pawlik-Sobecka L, et al. Efficacy of the Whole-Body Cryotherapy as Add-on Therapy to Pharmacological Treatment of Depression-A Randomized Controlled Trial. Front Psychiatry. 2020;11:522. doi:10.3389/fpsyt.2020.00522
2. Augustyńska B, Żyła M, Rakowski A, Szark-Eckardt M, Mrozkowiak M, Łubkowska W. Assessment of the cognitive functions in kayakers of the national team after a training cycle combined with whole body cryotherapy. Med Biol Sci. 2016;30(4):5-11. doi:10.12775/MBS.2016.028
3. Lombardi G, Ziemann E, Banfi G. Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature. Front Physiol. 2017;8:258. doi:10.3389/fphys.2017.00258
4. Ptaszek B, Podsiadło S, Adamiak J, Marchewka J, Tota Ł, Teległów A. Effect of Whole-Body Cryotherapy on Oxidant-Antioxidant Imbalance in Women with Multiple Sclerosis. J Clin Med. 2023;12(18):5958. doi:10.3390/jcm12185958
5. Tokarczyk W, Demel K, Dziedzic M, et al. Cryotherapy and Whole Body Cooling: A Critical Review of Physiological Impacts on Elite Athletes. Qual Sport. 2025;39:59199-59199. doi:10.12775/QS.2025.39.59199
6. Bouzigon R, Grappe F, Ravier G, Dugue B. Whole- and partial-body cryostimulation/cryotherapy: Current technologies and practical applications. J Therm Biol. 2016;61:67-81. doi:10.1016/j.jtherbio.2016.08.009
7. Guillot X, Tordi N, Laheurte C, et al. Local ice cryotherapy decreases synovial interleukin 6, interleukin 1β, vascular endothelial growth factor, prostaglandin-E2, and nuclear factor kappa B p65 in human knee arthritis: a controlled study. Arthritis Res Ther. 2019;21(1):180. doi:10.1186/s13075-019-1965-0
8. Algafly AA, George KP. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. Br J Sports Med. 2007;41(6):365-369; discussion 369. doi:10.1136/bjsm.2006.031237
9. Hohenauer E, Deliens T, Clarys P, Clijsen R. Perfusion of the skin’s microcirculation after cold-water immersion (10°C) and partial-body cryotherapy (-135°C). Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI. 2019;25(5):677-682. doi:10.1111/srt.12703
10. Rymaszewska J, Ramsey D, Chładzińska-Kiejna S. Whole-body cryotherapy as adjunct treatment of depressive and anxiety disorders. Arch Immunol Ther Exp (Warsz). 2008;56(1):63-68. doi:10.1007/s00005-008-0006-5
11. Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet Lond Engl. 2021;397(10284):1577-1590. doi:10.1016/S0140-6736(20)32205-4
12. Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020;36(1):1-12. doi:10.1016/j.cger.2019.08.002
13. Legroux L, Arbour N. Multiple Sclerosis and T Lymphocytes: An Entangled Story. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol. 2015;10(4):528-546. doi:10.1007/s11481-015-9614-0
14. Wu D, Luo Y, Li T, et al. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front Immunol. 2022;13:1051082. doi:10.3389/fimmu.2022.1051082
15. Hwang MC, Ridley L, Reveille JD. Ankylosing spondylitis risk factors: a systematic literature review. Clin Rheumatol. 2021;40(8):3079-3093. doi:10.1007/s10067-021-05679-7
16. Meraz-Ríos MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernández J, Campos-Peña V. Inflammatory process in Alzheimer’s Disease. Front Integr Neurosci. 2013;7:59. doi:10.3389/fnint.2013.00059
17. Isik S, Yeman Kiyak B, Akbayir R, Seyhali R, Arpaci T. Microglia Mediated Neuroinflammation in Parkinson’s Disease. Cells. 2023;12(7):1012. doi:10.3390/cells12071012
18. Brecht M, Wilkinson DJC. The outcome of treatment limitation discussions in newborns with brain injury. Arch Dis Child Fetal Neonatal Ed. 2015;100(2):F155-F160. doi:10.1136/archdischild-2014-307399
19. Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest. 2012;122(4):1180-1188. doi:10.1172/JCI58649
20. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis. PloS One. 2016;11(4):e0152925. doi:10.1371/journal.pone.0152925
21. Mahad DJ, Ziabreva I, Campbell G, et al. Mitochondrial changes within axons in multiple sclerosis. Brain J Neurol. 2009;132(Pt 5):1161-1174. doi:10.1093/brain/awp046
22. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid Med Cell Longev. 2017;2017:2525967. doi:10.1155/2017/2525967
23. Smallwood MJ, Nissim A, Knight AR, Whiteman M, Haigh R, Winyard PG. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med. 2018;125:3-14. doi:10.1016/j.freeradbiomed.2018.05.086
24. Rymaszewska J, Lion KM, Stańczykiewicz B, et al. The improvement of cognitive deficits after whole-body cryotherapy - A randomised controlled trial. Exp Gerontol. 2021;146:111237. doi:10.1016/j.exger.2021.111237
25. Piterà P, Cremascoli R, Bianchi L, et al. Autonomic Modulation in Parkinson’s Disease Using Whole-Body Cryostimulation: A Pilot Study. Biomedicines. 2024;12(11):2467. doi:10.3390/biomedicines12112467
26. Huang T, Wang XX, Gao CY, et al. Motor symptoms of Parkinson’s disease are affected by temperature: A controlled pilot study. Brain Behav. 2024;14(1):e3369. doi:10.1002/brb3.3369
27. Alito A, Fontana JM, Franzini Tibaldeo E, et al. Whole-Body Cryostimulation in Multiple Sclerosis: A Scoping Review. J Clin Med. 2024;13(7):2003. doi:10.3390/jcm13072003
28. Zielińska-Nowak E, Lipert A, Kikowski Ł, Miller E. Impact of Whole-Body Cryotherapy on Pain, Sleep Quality, Functional Status, and Quality of Life in Multiple Sclerosis: A Comparative Study with Follow-Up. J Pers Med. 2025;15(2):46. doi:10.3390/jpm15020046
29. Sadura-Sieklucka T, Sołtysiuk B, Karlicka A, Sokołowska B, Kontny E, Księżopolska-Orłowska K. Effects of whole body cryotherapy in patients with rheumatoid arthritis considering immune parameters. Reumatologia. 2019;57(6):320-325. doi:10.5114/reum.2019.90825
30. Klemm P, Hoffmann J, Asendorf T, et al. Whole-body cryotherapy for the treatment of rheumatoid arthritis: a monocentric, single-blinded, randomised controlled trial. Clin Exp Rheumatol. 2022;40(11):2133-2140. doi:10.55563/clinexprheumatol/lrff6k
31. Hirvonen HE, Mikkelsson MK, Kautiainen H, Pohjolainen TH, Leirisalo-Repo M. Effectiveness of different cryotherapies on pain and disease activity in active rheumatoid arthritis. A randomised single blinded controlled trial. Clin Exp Rheumatol. 2006;24(3):295-301.
32. ALTEMS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma RM, Italy, Leone R, Malvezzi M, et al. The Perspective of Whole Body Cryotherapy in Rheumatic Diseases: A Narrative Review. Phys Med Rehabil Disabil. 2024;10(1):1-11. doi:10.24966/PMRD-8670/100088
33. The Effect of Whole-Body Cryotherapy at Different Temperatures on Proinflammatory Cytokines, Oxidative Stress Parameters, and Disease Activity in Patients with Ankylosing Spondylitis - PubMed. Accessed June 14, 2025. https://pubmed.ncbi.nlm.nih.gov/30402204/
34. Kwon OC, Park MC. BASDAI cut-off values corresponding to ASDAS cut-off values. Rheumatol Oxf Engl. 2022;61(6):2369-2374. doi:10.1093/rheumatology/keab494
35. Stanek A, Cholewka A, Gadula J, Drzazga Z, Sieron A, Sieron-Stoltny K. Can Whole-Body Cryotherapy with Subsequent Kinesiotherapy Procedures in Closed Type Cryogenic Chamber Improve BASDAI, BASFI, and Some Spine Mobility Parameters and Decrease Pain Intensity in Patients with Ankylosing Spondylitis? BioMed Res Int. 2015;2015:404259. doi:10.1155/2015/404259
36. Coppi F, Pinti M, Selleri V, et al. Cardiovascular Effects of Whole-Body Cryotherapy in Non-professional Athletes. Front Cardiovasc Med. 2022;9:905790. doi:10.3389/fcvm.2022.905790
37. Garcia C, Karri J, Zacharias NA, Abd-Elsayed A. Use of Cryotherapy for Managing Chronic Pain: An Evidence-Based Narrative. Pain Ther. 2021;10(1):81-100. doi:10.1007/s40122-020-00225-w
38. Prohaska J, Jan AH. Cryotherapy in Dermatology. In: StatPearls. StatPearls Publishing; 2025. Accessed June 14, 2025. http://www.ncbi.nlm.nih.gov/books/NBK482319/
39. Storniolo JL, Chaulan M, Esposti R, Cavallari P. A single session of whole-body cryotherapy boosts maximal cycling performance and enhances vagal drive at rest. Exp Brain Res. 2023;241(2):383-393. doi:10.1007/s00221-022-06528-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Weronika Kalinowska, Paulina Sara Kulasza, Michał Szczepański , Natalia Dzieszko, Maciej Borowski, Aleksandra Szeliga, Tomasz Karol Książek , Kinga Kozłowska , Piotr Mikołaj Dembicki, Anna Ewelina Francuziak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 157
Number of citations: 0