Physical Activity and Inflammatory Bowel Diseases: Evidence from Animal Models
DOI:
https://doi.org/10.12775/QS.2025.45.66461Keywords
physical activity, exercise, inflammatory bowel disease, animal models, experimental colitis, oxidative stress, gut microbiota, inflammationAbstract
Background:
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are chronic disorders marked by immune dysregulation, oxidative stress, and barrier dysfunction. Physical activity has systemic anti-inflammatory and antioxidant effects, yet mechanisms influencing intestinal inflammation remain unclear. Animal models of colitis provide key insights.
Aim:
To summarize preclinical evidence on how exercise affects IBD, focusing on immune, oxidative, and microbiota-related mechanisms in animal models.
Methods:
A narrative review of studies up to September 2025 was conducted using PubMed, Scopus, and Web of Science. Search terms included “exercise,” “physical activity,” “colitis,” “IBD,” “DSS,” and “TNBS.” Eligible studies used rodent models of induced colitis with defined exercise protocols. Data on animal type, induction method, exercise parameters, and outcomes were analyzed qualitatively.
Results:
Moderate physical activity consistently attenuated colonic inflammation, oxidative damage, and permeability. Exercise reduced TNF-α, IL-1β, and IL-6, while increasing IL-10 expression. It activated Nrf2 signaling, enhancing antioxidant enzymes (SOD, catalase), and improved gut microbiota diversity. In contrast, high-intensity or forced exercise aggravated mucosal injury, oxidative stress, and cytokine imbalance, indicating a dose-dependent effect.
Conclusions:
Evidence from animal studies shows that regular, moderate exercise protects against experimental colitis through immune, oxidative, and microbial modulation. These findings highlight exercise as a potential adjunctive approach for IBD prevention and management, though optimal regimens for clinical translation require further study.
References
Achtenberg M., et al. (2025). Structured exercise in patients with inflammatory bowel disease: A literature review. Gastroenterology Review / Przegląd Gastroenterologiczny, 20(1), 36–40. https://doi.org/10.5114/pg.2025.148473
Allen JM, Mailing LJ, Cohrs J, Salmonson C, Fryer JD, Nehra V, Hale VL, Kashyap P, White BA, Woods JA. (2018). Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes. 2018 Mar 4;9(2):115-130. https://doi.org/10.1080/19490976.2017.1372077
Bilski, J., Mazur-Bialy, A. I., Brzozowski, B., Magierowski, M., Jasnos, K., Krzysiek-Maczka, G., … Brzozowski, T. (2015). Moderate exercise training attenuates the severity of experimental rodent colitis: The importance of crosstalk between adipose tissue and skeletal muscles. Mediators of Inflammation, 2015, 605071. https://doi.org/10.1155/2015/605071
Bilski, J., Mazur-Bialy, A., Wójcik, D., Magierowski, M., Surmiak, M., Kwiecień, S., … Brzozowski, T. (2019). Effect of forced physical activity on the severity of experimental colitis in normal weight and obese mice: Involvement of oxidative stress and proinflammatory biomarkers. Nutrients, 11(5), 1127. https://doi.org/10.3390/nu11051127
Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014 Feb 4;104:15.25.1-15.25.14. https://doi.org/10.1002/0471142735.im1525s104
Cho J, Kim D, Kang H. (2020). Exercise Preconditioning Attenuates the Response to Experimental Colitis and Modifies Composition of Gut Microbiota in Wild-Type Mice. Life (Basel). 2020 Sep 14;10(9):200. https://doi.org/10.3390/life10090200
Cook MD, Martin SA, Williams C, Whitlock K, Wallig MA, Pence BD, Woods JA. (2013). Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain Behav Immun. 2013 Oct;33:46-56. https://doi.org/10.1016/j.bbi.2013.05.005
Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk-Karolczuk J, Domagalska M, Cichoń J, Skarpańska-Stejnborn A.(2022). Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Sci Med Rehabil. 2022 Jul 7;14(1):122. https://doi.org/10.1186/s13102-022-00513-2
Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, Ahmadi-Vand Z, Marsden KR, Gibson DL. (2020). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and SCFA concentration in humans and mice. Microbiome. 2020;8(1):98. https://doi.org/10.1128/msystems.00515-20
Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230–235. https://doi.org/10.1179/2047480615Z.000000000329
Gadaleta RM, Garcia-Irigoyen O, Moschetta A. (2017) Exploration of Inflammatory Bowel Disease in Mice: Chemically Induced Murine Models of Inflammatory Bowel Disease (IBD). Curr Protoc Mouse Biol. 2017 Mar 2;7(1):13-28. https://doi.org/10.1002/cpmo.20
Gleeson, M. (2011). The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology, 11, 607–615. https://doi.org/10.1038/nri3041
Green, B. N., Johnson, C. D., & Adams, A. (2006). Writing narrative literature reviews for peer-reviewed journals: Secrets of the trade. Journal of Chiropractic Medicine, 5(3), 101–117. https://doi.org/10.1016/S0899-3467(07)60142-6
Hooijmans, C. R., Rovers, M. M., de Vries, R. B. M., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 43. https://doi.org/10.1186/1471-2288-14-43
Kalafateli M, Triantos C, Theocharis G, Giannakopoulou D, Koutroumpakis E, Chronis A, Sapountzis A, Margaritis V, Thomopoulos K, Nikolopoulou V. (2013). Health-related quality of life in patients with inflammatory bowel disease: a single-center experience. Ann Gastroenterol. 2013;26(3):243-248. https://pubmed.ncbi.nlm.nih.gov/24714279/
Kaplan, G. G., & Windsor, J. W. (2021). The four epidemiological stages in the global evolution of IBD. Nature Reviews Gastroenterology & Hepatology, 18(1), 56–66. https://doi.org/10.1038/s41575-020-00360-x
Khalili H, Ananthakrishnan AN, Konijeti GG, Liao X, Higuchi LM, Fuchs CS, Spiegelman D, Richter JM, Korzenik JR, Chan AT. (2013). Physical activity and risk of inflammatory bowel disease: prospective study from the Nurses' Health Study cohorts. BMJ. 2013 Nov 14;347:f6633. https://doi.org/10.1136/bmj.f6633
Koutouratsas T, Philippou A, Kolios G, Koutsilieris M, Gazouli M. (2021). Role of exercise in preventing and restoring gut dysbiosis in patients with inflammatory bowel diseases: A review. World J Gastroenterol. 2021 Aug 14;27(30):5037-5046. https://doi.org/ 10.3748/wjg.v27.i30.5037
Mehta M, Ahmed S, Dryden G. (2017) Immunopathophysiology of inflammatory bowel disease: how genetics link barrier dysfunction and innate immunity to inflammation. Innate Immun. 2017 Aug;23(6):497-505. https://doi.org/10.1177/1753425917722206
Ng, S. C., et al. (2017). Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. The Lancet, 390(10114), 2769–2778. https://doi.org/10.1016/S0140-6736(17)32448-0
Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine – Evidence for prescribing exercise as therapy in chronic disease. Scandinavian Journal of Medicine & Science in Sports, 25(S3), 1–72. https://doi.org/10.1111/sms.12581
Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., & Britten, N. (2006). Guidance on the conduct of narrative synthesis in systematic reviews. ESRC Methods Programme. https://doi.org/10.13140/2.1.1018.4643
Ruan Y, Jin Q, Zeng J, Ren F, Xie Z, Ji K, Wu L, Wu J, Li L. (2020). Grape Seed Proanthocyanidin Extract Ameliorates Cardiac Remodelling After Myocardial Infarction Through PI3K/AKT Pathway in Mice. Front Pharmacol. 2020 Dec 4;11:585984. https://doi.org/10.3389/fphar.2020.585984
Szalai Z, Szász A, Nagy I, Puskás LG, Kupai K, Király A, Berkó AM, Pósa A, Strifler G, Baráth Z, Nagy LI, Szabó R, Pávó I, Murlasits Z, Gyöngyösi M, Varga C. (2014). Anti-inflammatory effect of recreational exercise in TNBS-induced colitis in rats: role of NOS/HO/MPO system. Oxid Med Cell Longev. 2014;2014:925981.. https://doi.org/10.1155/2014/925981
Takami M, Aoi W, Matsumoto K, Kato Y, Kobayashi Y, Kuwahata M. (2024). High-intensity exercise impairs intestinal barrier function by generating oxidative stress. J Clin Biochem Nutr. 2024 Mar;74(2):136-140. https://doi.org/10.3164/jcbn.23-96
Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, Madrigal-Bujaidar E, Álvarez-González I, García-Melo LF, Anguiano-Robledo L, Fregoso-Aguilar T, Morales-Gonzalez JA. (2019). Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants (Basel). 2019 Jun 25;8(6):196. https://doi.org/10.3390/antiox8060196
Walsh, N. P., et al. (2011). Position statement. Part one: Immune function and exercise. Exercise Immunology Review, 17, 6–36. https://pubmed.ncbi.nlm.nih.gov/21446352/
Wen, C., et al. (2024). Animal models of inflammatory bowel disease: Category and evaluation indexes. Intestinal Research, 22(3), 233–248. https://doi.org/10.1093/gastro/goae021
Zhang YF, Shi TT, Lin YL, Zhu YT, Lin S, Fang TY. (2025). Macrophage Metabolic Reprogramming in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. J Inflamm Res. 2025 Aug 27;18:11821-11839. https://doi.org/10.2147/jir.s534447
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Kamil A. Sobieszek, Patrycja Idzik

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 99
Number of citations: 0