Probiotics in Sports: Modulating the Microbiome for Performance and Health
DOI:
https://doi.org/10.12775/QS.2025.43.62412Keywords
gut microbiota, microbiome composition, physical activity, excercise, diet, probiotics, athletic performance, short-chain fatty acids, gut-brain axis, gut barrier integrity, dysbiosis, immune modulation, sports nutrition, personalised nutritionAbstract
Background
The human gut microbiome—a dynamic ecosystem of bacteria, viruses, fungi, and archaea—is integral to digestion, immune modulation, metabolism, and systemic health. Its composition is shaped by perinatal factors, genetics, environment, diet, physical activity, and probiotic interventions. Modulating the microbiome through lifestyle and nutritional strategies offers potential for disease prevention and enhanced athletic performance.
Aim
This review synthesizes current evidence on factors influencing gut microbiota composition across the lifespan, the systemic impacts of dysbiosis, and the roles of diet, physical activity, and probiotics—particularly in athletic populations—in fostering a health-promoting microbiome.
Material and Methods
A narrative review was conducted using peer-reviewed studies, meta-analyses, and clinical trials sourced from PubMed, Scopus, and Web of Science. Topics included microbiome development, lifestyle and dietary influences, exercise-related microbiome adaptations, and probiotic applications.
Results
Perinatal factors such as delivery mode, breastfeeding, and antibiotics shape early microbiota with long-term health effects. Diet is a primary modulator: fiber- and polyphenol-rich diets enhance microbial diversity, whereas high-protein, low-fiber diets may impair gut health in athletes. Physical activity modifies microbiota structure and function; regular exercise promotes beneficial SCFA-producing taxa, strengthens gut barrier integrity, and supports immune and neurocognitive health. Probiotic supplementation improves gastrointestinal and dermatological conditions, modulates inflammation, and enhances athletic recovery and resilience.
Conclusions
The gut microbiome is a key determinant of systemic health. Targeted diet, structured physical activity, and personalized probiotic use can optimize microbiota function. In athletes, integrating microbiome profiling with individualized nutrition may enhance performance and recovery.
References
1. Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J. F., & Versalovic, J.
The placenta harbors a unique microbiome. Science Translational Medicine, 6(237), 237ra65. (2014). https://doi.org/10.1126/scitranslmed.3008599
2. Hill, C. J., Lynch, D. B., Murphy, K., Ulaszewska, M., Jeffery, I. B., O’Shea, C. A., Watkins, C., Dempsey, E., Mattivi, F., Tuohy, K., Ross, R. P., Ryan, C. A., & Stanton, C. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome, 5(1), 4. (2017). https://doi.org/10.1186/s40168-016-0213-y
3. Stinson, L. F., Payne, M. S., & Keelan, J. A. A Critical Review of the Bacterial Baptism Hypothesis and the Impact of Cesarean Delivery on the Infant Microbiome.Frontiers in Medicine, 5, 135. (2018). https://doi.org/10.3389/fmed.2018.00135
4. Cresci, G. A., & Bawden, E. The Gut Microbiome: What We Do and Don’t Know. Nutrition in Clinical Practice, 30(6), 734–746. (2015). https://doi.org/10.1177/0884533615609899
5. Salazar, N., Arboleya, S., Valdés, L., Stanton, C., Ross, P., Ruiz, L., & Gueimonde, M. The human intestinal microbiome at extreme ages of life. Frontiers in Genetics, 5, 406. (2014). https://doi.org/10.3389/fgene.2014.00406
6. Mohr, A. E., Jäger, R., Carpenter, K. C., Kerksick, C. M., Purpura, M., Townsend, J. R., West, N. P., & Black, K. E. The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 17(1), 24. (2020). https://doi.org/10.1186/s12970-020-00353-w
7. Fouhy, F., Watkins, C., Hill, C. J., O'Shea, C. A., Nagle, B., Dempsey, E. M., O'Toole, P. W., Stanton, C., Ross, R. P., & Ryan, C. A. Perinatal factors affect the gut microbiota up to four years after birth. Nature Communications, 10, 1517. (2019). https://doi.org/10.1038/s41467-019-09252-4
8. D'Argenio, V., & Salvatore, F. The role of the gut microbiome in the healthy adult status. Clinica Chimica Acta, 451, 97–102. (2015). https://doi.org/10.1016/j.cca.2015.01.003
9. Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. The role of gut microbiome in inflammatory bowel disease diagnosis and prognosis. United European Gastroenterology Journal, 10(10), 1091–1102. (2022). https://doi.org/10.1002/ueg2.12338
10. Young Lee, N., & Suk, K. T. The Role of the Gut Microbiome in Liver Cirrhosis Treatment. International Journal of Molecular Sciences, 22(1), 199. (2020). https://doi.org/10.3390/ijms22010199
11. Chen, Y., Zhou, J., & Wang, L. Role and Mechanism of Gut Microbiota in Human Disease. Frontiers in Cellular and Infection Microbiology, 11, 625913. (2021). https://doi.org/10.3389/fcimb.2021.625913
12. Wu, J., Xu, S., Xiang, C., Cao, Q., Li, Q., Huang, J., & Wang, J. The role of the gut microbiome and its metabolites in metabolic diseases. Protein & Cell, 12(5), 360–373. (2021). https://doi.org/10.1007/s13238-020-00814-7
13. Ryguła, I., Ostrowska, M., Sztiller-Sikorska, M., Gruca, A., & Sikorski, M. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. International Journal of Molecular Sciences, 25(4), 1984. (2024). https://doi.org/10.3390/ijms25041984
14. Wiertsema, S. P., van Bergenhenegouwen, J., Garssen, J., & Knippels, L. M. J. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases. Nutrients, 13(3), 886. (2021). https://doi.org/10.3390/nu13030886
15. Clark, A., & Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. Journal of the International Society of Sports Nutrition, 13(1), 43. (2016). https://doi.org/10.1186/s12970-016-0155-6
16. Hughes, R. L., & Holscher, H. D. Fueling gut microbes: A review of the interaction between diet, exercise, and the gut microbiota in athletes. Advances in Nutrition, 12(6), 2190–2215. (2021). https://doi.org/10.1093/advances/nmab077
17. Mancin, L., Amatori, S., Caprio, M., Sattin, E., Bertoldi, L., Cenci, L., Sisti, D., Bianco, A., & Paoli, A. Effect of 30 days of ketogenic Mediterranean diet with phytoextracts on athletes’ gut microbiome composition. Frontiers in Nutrition, 9, 979651. (2022). https://doi.org/10.3389/fnut.2022.979651
18. Matusheski, N. V., Caffrey, A., Christensen, L., Mezgec, S., Surendran, S., Hjorth, M. F., McNulty, H., Pentieva, K., Roager, H. M., Koroušić Seljak, B., Vimaleswaran, K. S., Remmers, M., & Péter, S. Diets, nutrients, genes and the microbiome: Recent advances in personalised nutrition. British Journal of Nutrition, 126(9), 1489–1497. (2021). https://doi.org/10.1017/S0007114521000374
19. Tabone, M., Simmons, K. B., Wawrykow, S., Wade, K. H., Pearson, M. J., Valentine, R. J., Cason, A. T., Belcher, B. R., O’Connell, J., Townsend, J. R., Ranganathan, S., & Nieman, D. C. The effect of acute moderate intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross country endurance athletes. Scientific Reports, 11, 3558. (2021). https://doi.org/10.1038/s41598-021-82947-1
20. Grosicki, G. J., Fielding, R. A., & Lustgarten, M. S. Gut check: Unveiling the influence of acute exercise on the gut microbiota. Experimental Physiology, 108, 1466–1480. (2023). https://doi.org/10.1113/EP091446
21. Ong, M. L., Nicholson, J. K., Holmes, E., Dodd, D., Beckonert, O., & Swann, J. R. Effect of an acute session of intermittent exercise on TMAO production following choline ingestion. Metabolomics, 20, 110. (2024). https://doi.org/10.1007/s11306-024-02177-0
22. Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., Shanahan, F., Cotter, P. D., & O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects. Gut, 67, 625–633. (2018). https://doi.org/10.1136/gutjnl-2016-313627
23. Aya, V., Flórez, A., Perez, L., & Ramírez, J. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLOS ONE, 16(2), e0247039. (2021). https://doi.org/10.1371/journal.pone.0247039
24. Arnold, L. E., Luna, R. A., Williams, K., Chan, J., Parker, R. A., Wu, Q., Hollway, J., Smith, T., & McDonough-Means, S. Probiotics for gastrointestinal symptoms and quality of life in autism: A placebo-controlled pilot trial. mSystems, 4(1), e00390-18. (2019). https://doi.org/10.1128/mSystems.00390-18
25. Bai, X., Zhu, M., He, Y., Liu, X., Yu, X., Li, W., & Fang, J. The impacts of probiotics in eradication therapy of Helicobacter pylori. Archives of Microbiology, 204, 692. (2022). https://doi.org/10.1007/s00203-022-03314-w
26. Gao, T., Wang, X., Li, Y., & Ren, F. The role of probiotics in skin health and related gut–skin axis: A review. Nutrients, 15, 3123. (2023). https://doi.org/10.3390/nu15143123
27. Lise, M. L. Z., Casagrande, M. F. R., Correia, T. S., Collares, L. M., Caumo, K. S., & Caumo, K. Use of probiotics in atopic dermatitis. Journal of Applied Microbiology, 125(6), 1815–1825. (2018). https://doi.org/10.1111/jam.14097
28. Malaguarnera, M., Vacante, M., Antic, T., Giordano, M., Chisari, G., Acquaviva, R., Mistretta, A., Motta, M., & Malaguarnera, M. Probiotics in the gastrointestinal diseases of the elderly. Journal of Clinical Gastroenterology, 46(S1), S62–S66. (2012). https://doi.org/10.1097/MCG.0b013e31826b65f0
29. Naomi, R., Embong, H., Othman, F., Ghazi, H. F., Maruthey, N., & Ahmad Basri, M. N. Probiotics for Alzheimer’s disease: A systematic review. Nutrients, 14(1), 20. (2021). https://doi.org/10.3390/nu14010020
30. Umborowati, M. A., Damayanti, D., Anggraeni, S., Rahmawati, E., & Alaydrus, F. The role of probiotics in the treatment of adult atopic dermatitis: A meta-analysis of randomized controlled trials. Journal of Health, Population and Nutrition, 41, 37. (2022). https://doi.org/10.1186/s41043-022-00318-6
31. Wu, X., Yang, C., Liu, J., Li, Q., Xie, F., Liu, W., Lu, D., Ye, Q., & Chen, Y. The efficacy of probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in irritable bowel syndrome: A systematic review and network meta-analysis. Journal of Gastroenterology and Hepatology. (2024). https://doi.org/10.1111/jgh.16395
32. Zhang, M. M., Qian, W., Qin, Y. Y., He, J., Zhou, Y. H. Probiotics in Helicobacter pylori eradication therapy: A systematic review and meta-analysis. World Journal of Gastroenterology, 21(14), 4345–4357. (2015). https://doi.org/10.3748/wjg.v21.i14.4345
33. Díaz-Jiménez, D., García-Díaz, D. F., García-Díaz, J. D., & Guisado-Requena, I. M. Impact of probiotics on the performance of endurance athletes: A systematic review. Nutrients, 13(11), 3991. (2021). https://doi.org/10.3390/nu13113991
34. Giron, M., Bekkali, N. L. H., & Mazmanian, S. K. Gut microbes and muscle function: Can probiotics make our muscles stronger? Trends in Microbiology, 30(5), 420–433. (2022). https://doi.org/10.1016/j.tim.2022.01.010
35. Huang, W.-C., Lee, M.-C., Lee, C.-C., Ng, K.-S., Hsu, Y.-J., Tsai, T.-Y., Young, S.-L., Lin, J.-S., & Huang, C.-C. Effect of Lactobacillus plantarum TWK10 on exercise physiological adaptation, performance, and body composition in healthy humans. Nutrients, 11(11), 2836. (2019). https://doi.org/10.3390/nu11112836
36. Jäger, R., Mohr, A. E., Carpenter, K. C., Kerksick, C. M., Purpura, M., Moussa, A., & Wells, S. D. International Society of Sports Nutrition Position Stand: Probiotics. Journal of the International Society of Sports Nutrition, 16, 62. (2019). https://doi.org/10.1186/s12970-019-0329-0
37. Przewłócka, K., Słoniewski, P., Leszczyńska, J., Krzemińska, E., & Dąbek-Drobny, A. Combined probiotics with vitamin D3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes. Nutrients, 15(13), 2906. (2023). https://doi.org/10.3390/nu15132906
38. Vitale, K. C., & Getzin, A. R. Nutrition and supplement update for the endurance athlete: Review and recommendations. Nutrients, 11(6), 1289. (2019). https://doi.org/10.3390/nu11061289
39. Pérez-Prieto, I., García-Navarro, M., López-Moreno, M., Moreno-Indias, I., & Tinahones, F. J. Physical activity, sedentary behavior and microbiome: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 27, 793–804. (2024). https://doi.org/10.1016/j.jsams.2024.07.003
40. Zeppa, S. D., Agostini, D., Piccoli, G., Capelli, C., Gervasi, M., Annibalini, G., Barbieri, E., Stocchi, V., Sestili, P., & Barbieri, E. Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 12(1), 17. (2019). https://doi.org/10.3390/nu12010017
41. Ramos, C., Hidalgo-Collazos, J. L., & Rodríguez-Borja, E. Systematic Review of the Effects of Exercise and Physical Activity on the Gut Microbiome of Older Adults. Nutrients, 14(3), 674. (2022). https://doi.org/10.3390/nu14030674
42. Campaniello, D., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients, 14(12), 2456. (2022). https://doi.org/10.3390/nu14122456
43. Dalton, A., Mermier, C., Zuhl, M. Exercise influence on the microbiome–gut–brain axis. Gut Microbes, 10(5), 555–568. (2018). https://doi.org/10.1080/19490976.2018.1562268
44. Fernandez, D. M., Rahman, A., & Fernandez, M. L. Physical Activity, Immune System, and the Microbiome in Cardiovascular Disease. Frontiers in Physiology, 9, 763. (2018). https://doi.org/10.3389/fphys.2018.00763
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Moliszewska, Paweł Kukiełka, Joanna Kośka, Gabriela Łocik, Julia Mazurek, Julia Załęcka, Alicja Nowik, Kacper Dywan, Martyna Musiorska, Michał Błaszkiewicz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 228
Number of citations: 0