The Impact of physical activity and related factors on the risk of melanoma development and progression of the disease - A literature review
DOI:
https://doi.org/10.12775/QS.2025.43.62381Keywords
melanoma, physical activity, exercise, skin cancerAbstract
Introduction
In 2020, around 325,000 new melanoma cases were diagnosed globally, with 57,000 resulting deaths. The highest incidence was observed in Australia and New Zealand, while much lower rates occurred in African and Asian countries. Melanoma was generally more common in males. The global rise in melanoma—possibly linked to increased travel and tanning device use—calls for identification of modifiable risk factors and predictors. Lifestyle elements, especially physical activity and body weight, play a major role in cancer risk and progression.
Purpose of research
This review aims to explore how physical activity and related factors affect melanoma risk and disease progression. It also examines sun-protection awareness, behaviors, and melanoma risk among outdoor athletes.
Materials and methods
In 2025, a literature review was conducted using PubMed, Web of Science, and Google Scholar, focusing on English-language studies analyzing the link between amateur or professional physical activity and melanoma. Search terms included "physical activity," "exercise," "athletes," "melanoma," and "photoprotection."
Summary
Numerous preclinical studies examine the influence of physical activity on the tumor microenvironment. Another key focus is the impact of exercise on melanoma patients undergoing immunotherapy. Epidemiological data emphasize sun exposure as a major risk factor, particularly for physically active individuals. Therefore, consistent use of sun protection is essential from an early age, especially for both professional and recreational athletes. Primary care physicians should conduct regular skin exams for active individuals, particularly swimmers. Future research should explore both behavioral and biological mechanisms and determine whether physical activity independently affects melanoma risk markers, such as telomere length and naevus count.
References
[1] A. Weber et al., “Association between physical activity, grip strength and sedentary behaviour with incidence of malignant melanoma: results from the UK Biobank,” Br J Cancer, vol. 125, no. 4, pp. 593–600, Aug. 2021, doi: 10.1038/s41416-021-01443-5.
[2] B. K. Ragnarsson-Olding, “Spatial density of primary malignant melanoma in sun-shielded body sites: A potential guide to melanoma genesis,” Acta Oncol, vol. 50, no. 3, pp. 323–328, Apr. 2011, doi: 10.3109/0284186X.2010.535846.
[3] A. Martin-Gorgojo et al., “Cutaneous melanoma primary site is linked to nevus density,” Oncotarget, vol. 8, no. 58, pp. 98876–98886, 2017, doi: 10.18632/ONCOTARGET.22016.
[4] D. C. Whiteman, P. Watt, D. M. Purdie, M. C. Hughes, N. K. Hayward, and A. C. Green, “Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma,” J Natl Cancer Inst, vol. 95, no. 11, pp. 806–812, Jun. 2003, doi: 10.1093/JNCI/95.11.806.
[5] C. M. Olsen, H. J. Carroll, and D. C. Whiteman, “Familial melanoma: a meta-analysis and estimates of attributable fraction,” Cancer Epidemiol Biomarkers Prev, vol. 19, no. 1, pp. 65–73, Jan. 2010, doi: 10.1158/1055-9965.EPI-09-0928.
[6] V. Nikolaou and A. J. Stratigos, “Emerging trends in the epidemiology of melanoma,” Br J Dermatol, vol. 170, no. 1, pp. 11–19, 2014, doi: 10.1111/BJD.12492.
[7] A. Kyrgidis, T. G. Tzellos, and S. Triaridis, “Melanoma: Stem cells, sun exposure and hallmarks for carcinogenesis, molecular concepts and future clinical implications,” J Carcinog, vol. 9, 2010, doi: 10.4103/1477-3163.62141.
[8] M. Arnold et al., “Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040,” JAMA Dermatol, vol. 158, no. 5, p. 495, May 2022, doi: 10.1001/JAMADERMATOL.2022.0160.
[9] A. Joosse et al., “Gender differences in melanoma survival: female patients have a decreased risk of metastasis,” J Invest Dermatol, vol. 131, no. 3, pp. 719–726, 2011, doi: 10.1038/JID.2010.354.
[10] S. W. Cash et al., “Recent physical activity in relation to DNA damage and repair using the comet assay,” J Phys Act Health, vol. 11, no. 4, pp. 770–776, 2014, doi: 10.1123/JPAH.2012-0278.
[11] C. V. de Sousa, M. M. Sales, T. S. Rosa, J. E. Lewis, R. V. de Andrade, and H. G. Simões, “The Antioxidant Effect of Exercise: A Systematic Review and Meta-Analysis,” Sports Med, vol. 47, no. 2, pp. 277–293, Feb. 2017, doi: 10.1007/S40279-016-0566-1.
[12] H. Cao Dinh et al., “Effects of Physical Exercise on Markers of Cellular Immunosenescence: A Systematic Review,” Calcif Tissue Int, vol. 100, no. 2, pp. 193–215, Feb. 2017, doi: 10.1007/S00223-016-0212-9.
[13] M. V. Fedewa, E. D. Hathaway, and C. L. Ward-Ritacco, “Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials,” Br J Sports Med, vol. 51, no. 8, pp. 670–676, Apr. 2017, doi: 10.1136/BJSPORTS-2016-095999.
[14] F. Perrier et al., “Life-Course Trajectories of Physical Activity and Melanoma Risk in a Large Cohort of Norwegian Women,” Clin Epidemiol, vol. 14, pp. 1571–1584, 2022, doi: 10.2147/CLEP.S382454.
[15] C. Ceci et al., “Impact of Physical Exercise on Melanoma Hallmarks: Current Status of Preclinical and Clinical Research,” J Cancer, vol. 15, no. 1, pp. 1–19, 2024, doi: 10.7150/jca.88559.
[16] T. K. Lee, A. C. MacArthur, R. P. Gallagher, and M. J. Elwood, “Occupational physical activity and risk of malignant melanoma: the Western Canada Melanoma Study,” Melanoma Res, vol. 19, no. 4, pp. 260–266, Aug. 2009, doi: 10.1097/CMR.0B013E32832E0BAE.
[17] S. C. Moore et al., “Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults,” JAMA Intern Med, vol. 176, no. 6, pp. 816–825, Jun. 2016, doi: 10.1001/jamainternmed.2016.1548.
[18] Y. Xu and C. J. Rogers, “Impact of physical activity and energy restriction on immune regulation of cancer,” Transl Cancer Res, vol. 9, no. 9, pp. 5700–5731, Sep. 2020, doi: 10.21037/TCR.2020.03.38.
[19] H. Savage et al., “Aerobic Exercise Alters the Melanoma Microenvironment and Modulates ERK5 S496 Phosphorylation,” Cancer Immunol Res, vol. 11, no. 9, pp. 1168–1183, Sep. 2023, doi: 10.1158/2326-6066.CIR-22-0465.
[20] P. Hojman et al., “Exercise suppresses tumor growth independent of high fat food intake and associated immune dysfunction,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-08850-5.
[21] C. M. M. Dos Santos et al., “Moderate physical exercise improves lymphocyte function in melanoma-bearing mice on a high-fat diet,” Nutr Metab (Lond), vol. 16, no. 1, Sep. 2019, doi: 10.1186/s12986-019-0394-z.
[22] L. Pedersen et al., “Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution,” Cell Metab, vol. 23, no. 3, pp. 554–562, Mar. 2016, doi: 10.1016/j.cmet.2016.01.011.
[23] L. A. Buss, A. D. Ang, B. Hock, B. A. Robinson, M. J. Currie, and G. U. Dachs, “Effect of post-implant exercise on tumour growth rate, perfusion and hypoxia in mice,” PLoS One, vol. 15, no. 3, 2020, doi: 10.1371/journal.pone.0229290.
[24] H. Yan et al., “Exercise sensitizes PD-1/PD-L1 immunotherapy as a hypoxia modulator in the tumor microenvironment of melanoma,” Front Immunol, vol. 14, 2023, doi: 10.3389/fimmu.2023.1265914.
[25] M. L. Bay et al., “Voluntary wheel running can lead to modulation of immune checkpoint molecule expression,” Acta Oncol (Madr), vol. 59, no. 12, pp. 1447–1454, Dec. 2020, doi: 10.1080/0284186X.2020.1817550.
[26] L. A. Buss et al., “Effect of immune modulation on the skeletal muscle mitochondrial exercise response: An exploratory study in mice with cancer,” PLoS One, vol. 16, no. 10 October, Oct. 2021, doi: 10.1371/journal.pone.0258831.
[27] J. Lee et al., “Exercise Promotes Pro-Apoptotic Ceramide Signaling in a Mouse Melanoma Model,” Cancers (Basel), vol. 14, no. 17, Sep. 2022, doi: 10.3390/cancers14174306.
[28] J. Zhu, S. Hao, X. Zhang, J. Qiu, Q. Xuan, and L. Ye, “Integrated Bioinformatics Analysis Exhibits Pivotal Exercise-Induced Genes and Corresponding Pathways in Malignant Melanoma,” Front Genet, vol. 11, Feb. 2021, doi: 10.3389/fgene.2020.637320.
[29] Z. H. I. Xia et al., “The Effect of Exercise on Gene Expression and Signaling in Mouse Melanoma Tumors,” Med Sci Sports Exerc, vol. 52, no. 7, pp. 1485–1494, Jul. 2020, doi: 10.1249/MSS.0000000000002291.
[30] M. Boileau et al., “Perceptions, knowledge and attitudes of healthcare professionals regarding the promotion of physical activity for melanoma patients,” Ann Dermatol Venereol, vol. 151, no. 4, Dec. 2024, doi: 10.1016/J.ANNDER.2024.103317.
[31] A. Hyatt et al., “Exercise Behaviors and Fatigue in Patients Receiving Immunotherapy for Advanced Melanoma: A Cross-Sectional Survey via Social Media,” Integr Cancer Ther, vol. 18, Jul. 2019, doi: 10.1177/1534735419864431.
[32] A. Hyatt et al., “I-Move, a personalised exercise intervention for patients with advanced melanoma receiving immunotherapy: A randomised feasibility trial protocol,” BMJ Open, vol. 10, no. 2, Feb. 2020, doi: 10.1136/bmjopen-2019-036059.
[33] J. Wiskemann, “Exercise as a Supportive Measure for Patients Undergoing Checkpoint-inhibitor Treatment (Sportivumab).” Accessed: Apr. 05, 2025. [Online]. Available: https://clinivaltrials.gov/
[34] E. Carmeli and R. Bartoletti, “Retrospective trial of complete decongestive physical therapy for lower extremity secondary lymphedema in melanoma patients,” Support Care Cancer, vol. 19, no. 1, pp. 141–147, Jan. 2011, doi: 10.1007/S00520-009-0803-3.
[35] J. Lacey et al., “A supportive care intervention for people with metastatic melanoma being treated with immunotherapy: a pilot study assessing feasibility, perceived benefit, and acceptability,” Support Care Cancer, vol. 27, no. 4, pp. 1497–1507, Apr. 2019, doi: 10.1007/S00520-018-4524-3.
[36] L. M. Buffart et al., “Effects and moderators of exercise on quality of life and physical function in patients with cancer: An individual patient data meta-analysis of 34 RCTs,” Cancer Treat Rev, vol. 52, pp. 91–104, Jan. 2017, doi: 10.1016/J.CTRV.2016.11.010.
[37] J. Kim, J. Kim, and A. Han, “The impact of leisure time physical activity on mental health and health perception among people with cancer,” Health Promot Perspect, vol. 10, no. 2, pp. 116–122, 2020, doi: 10.34172/HPP.2020.19.
[38] G. Lopez et al., “Physical Therapist-Led Exercise Assessment and Counseling in Integrative Cancer Care: Effects on Patient Self-reported Symptoms and Quality of Life,” Integr Cancer Ther, vol. 18, Mar. 2019, doi: 10.1177/1534735419832360.
[39] T. M. Liska and A. M. Kolen, “The role of physical activity in cancer survivors’ quality of life,” Health Qual Life Outcomes, vol. 18, no. 1, Jun. 2020, doi: 10.1186/S12955-020-01448-3.
[40] R. I. Vogel et al., “Comparison of quality of life among long-term melanoma survivors and non-melanoma controls: a cross-sectional study,” Qual Life Res, vol. 26, no. 7, pp. 1761–1766, Jul. 2017, doi: 10.1007/S11136-017-1532-6.
[41] M. E. Beutel et al., “Depression, anxiety and quality of life in long-term survivors of malignant melanoma: a register-based cohort study,” PLoS One, vol. 10, no. 1, Jan. 2015, doi: 10.1371/JOURNAL.PONE.0116440.
[42] R. I. Vogel, L. G. Strayer, R. L. Ahmed, A. Blaes, and D. A. Lazovich, “A Qualitative Study of Quality of Life Concerns following a Melanoma Diagnosis,” J Skin Cancer, vol. 2017, 2017, doi: 10.1155/2017/2041872.
[43] A. E. Stenzel et al., “Cross-sectional study of physical activity among long-term melanoma survivors and population controls,” May 01, 2023, Institute for Ionics. doi: 10.1007/s00403-022-02334-2.
[44] J. K. Robinson, “Physical activity of early stage melanoma survivors,” Int J Womens Dermatol, vol. 5, no. 1, pp. 14–17, Feb. 2019, doi: 10.1016/j.ijwd.2018.06.001.
[45] S. K. H. Bøhn et al., “Lifestyle among long-term survivors of cancers in young adulthood,” Supportive Care in Cancer, vol. 29, no. 1, pp. 289–300, Jan. 2021, doi: 10.1007/s00520-020-05445-6.
[46] J. K. Robinson, D. A. Durst, E. Gray, and M. Kwasny, “Protection-adjusted UV dose estimated for body areas: Daily self-reported sun protection modification of wearable UV sensor dose,” Photodermatol Photoimmunol Photomed, vol. 36, no. 5, pp. 357–364, Sep. 2020, doi: 10.1111/phpp.12557.
[47] S. Beijer, G. I. J. M. Kempen, M. C. G. Pijls-Johannesma, A. De Graeff, and P. C. Dagnelie, “Determinants of overall quality of life in preterminal cancer patients,” Int J Cancer, vol. 123, no. 1, pp. 232–235, Jul. 2008, doi: 10.1002/IJC.23497.
[48] R. W. Joseph et al., “Health-related quality of life (QoL) in patients with advanced melanoma receiving immunotherapies in real-world clinical practice settings,” Qual Life Res, vol. 29, no. 10, pp. 2651–2660, Oct. 2020, doi: 10.1007/S11136-020-02520-7.
[49] K. Lisy et al., “Patient-reported outcomes in melanoma survivors at 1, 3 and 5 years post-diagnosis: a population-based cross-sectional study,” Qual Life Res, vol. 29, no. 8, pp. 2021–2027, Aug. 2020, doi: 10.1007/S11136-020-02464-Y.
[50] B. J. Crosby et al., “Associations of Physical Activity and Exercise with Health-related Outcomes in Patients with Melanoma During and After Treatment: A Systematic Review,” 2021, SAGE Publications Inc. doi: 10.1177/15347354211040757.
[51] D. Milne, A. Hyatt, A. Billett, K. Gough, and M. Krishnasamy, “Exploring the experiences of people treated with immunotherapies for advanced melanoma and those caring for them: ‘real-world’ data,” Cancer Nurs, vol. 43, no. 2, pp. E97–E104, Mar. 2020, doi: 10.1097/NCC.0000000000000683.
[52] L. Wiens, N. Schäffeler, T. Eigentler, C. Garbe, and A. Forschner, “Psychological distress of metastatic melanoma patients during treatment with immune checkpoint inhibitors: Results of a prospective study,” Cancers (Basel), vol. 13, no. 11, Jun. 2021, doi: 10.3390/cancers13112642.
[53] J. R. Thompson, R. A. Salam, S. Hanna, M. Dieng, R. P. M. Saw, and I. Bartula, “A systematic review with evidence mapping of supportive care interventions for melanoma patients and caregivers,” Jun. 01, 2023, John Wiley and Sons Inc. doi: 10.1002/cam4.6012.
[54] M. Boileau et al., “Description of supportive care and feasibility of physical exercise program to improve quality of life in advanced melanoma patients,” Melanoma Res, vol. 33, no. 3, pp. 230–238, Jun. 2023, doi: 10.1097/CMR.0000000000000889.
[55] J. R. Thompson et al., “Supportive care needs in Australian melanoma patients and caregivers: results from a quantitative cross-sectional survey,” Quality of Life Research, vol. 32, no. 12, pp. 3531–3545, Dec. 2023, doi: 10.1007/s11136-023-03492-0.
[56] B. Addario et al., “A New Framework for Co-Creating Telehealth for Cancer Care with the Patient Community,” Patient, vol. 16, no. 5, pp. 415–423, Sep. 2023, doi: 10.1007/s40271-023-00642-x.
[57] B. J. Crosby et al., “Feasibility of supervised telehealth exercise for patients with advanced melanoma receiving checkpoint inhibitor therapy,” Cancer Med, vol. 12, no. 13, pp. 14694–14706, Jul. 2023, doi: 10.1002/cam4.6091.
[58] A. Giatromanolaki, E. Sivridis, C. Kouskoukis, K. C. Gatter, A. L. Harris, and M. I. Koukourakis, “Hypoxia-inducible factors 1alpha and 2alpha are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin,” Melanoma Res, vol. 13, no. 5, pp. 493–501, Oct. 2003, doi: 10.1097/00008390-200310000-00008.
[59] S. Goel et al., “Normalization of the vasculature for treatment of cancer and other diseases,” Physiol Rev, vol. 91, no. 3, pp. 1071–1121, 2011, doi: 10.1152/PHYSREV.00038.2010.
[60] S. K. Loftus et al., “Hypoxia-induced HIF1α targets in melanocytes reveal a molecular profile associated with poor melanoma prognosis,” Pigment Cell Melanoma Res, vol. 30, no. 3, pp. 339–352, May 2017, doi: 10.1111/PCMR.12579.
[61] J. T. Lee and M. Herlyn, “Microenvironmental influences in melanoma progression,” J Cell Biochem, vol. 101, no. 4, pp. 862–872, Jul. 2007, doi: 10.1002/JCB.21204.
[62] H. Li, J. Chen, X. Wang, M. He, Z. Zhang, and Y. Cen, “Nodal induced by hypoxia exposure contributes to dacarbazine resistance and the maintenance of stemness in melanoma cancer stem like cells,” Oncol Rep, vol. 39, no. 6, pp. 2855–2864, Jun. 2018, doi: 10.3892/OR.2018.6387.
[63] Y. Qin et al., “Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma,” Mol Cancer Ther, vol. 15, no. 10, pp. 2442–2454, Oct. 2016, doi: 10.1158/1535-7163.MCT-15-0963.
[64] S. Ribero, D. Glass, A. Aviv, T. D. Spector, and V. Bataille, “Height and bone mineral density are associated with naevus count supporting the importance of growth in melanoma susceptibility,” PLoS One, vol. 10, no. 1, Jan. 2015, doi: 10.1371/JOURNAL.PONE.0116863.
[65] M. Mangino et al., “DCAF4, a novel gene associated with leucocyte telomere length,” J Med Genet, vol. 52, no. 3, pp. 157–162, 2015, doi: 10.1136/JMEDGENET-2014-102681.
[66] E. Mundstock et al., “Effects of physical activity in telomere length: Systematic review and meta-analysis,” Ageing Res Rev, vol. 22, pp. 72–80, Jul. 2015, doi: 10.1016/J.ARR.2015.02.004.
[67] W. Chilton, B. O’Brien, and F. Charchar, “Telomeres, Aging and Exercise: Guilty by Association?,” Int J Mol Sci, vol. 18, no. 12, Dec. 2017, doi: 10.3390/IJMS18122573.
[68] H. Dai et al., “Associations between benign cutaneous nevi and risk of Type 2 diabetes mellitus in men and women: results from two prospective cohort studies,” Diabet Med, vol. 34, no. 7, pp. 925–933, Jul. 2017, doi: 10.1111/DME.13297.
[69] R. Scragg and C. A. Camargo, “Frequency of leisure-time physical activity and serum 25-hydroxyvitamin D levels in the US population: results from the Third National Health and Nutrition Examination Survey,” Am J Epidemiol, vol. 168, no. 6, pp. 577–586, Sep. 2008, doi: 10.1093/AJE/KWN163.
[70] F. Perrier et al., “Physical activity and cutaneous melanoma risk: A Norwegian population-based cohort study,” Prev Med (Baltim), vol. 153, Dec. 2021, doi: 10.1016/j.ypmed.2021.106556.
[71] T. E. Robsahm et al., “Cardiorespiratory fitness and risk of site-specific cancers: a long-term prospective cohort study,” Cancer Med, vol. 6, no. 4, pp. 865–873, Apr. 2017, doi: 10.1002/CAM4.1043.
[72] G. Behrens, T. Niedermaier, M. Berneburg, D. Schmid, and M. F. Leitzmann, “Physical activity, cardiorespiratory fitness and risk of cutaneous malignant melanoma: Systematic review and meta-analysis,” PLoS One, vol. 13, no. 10, Oct. 2018, doi: 10.1371/journal.pone.0206087.
[73] V. J. Cogliano et al., “Preventable exposures associated with human cancers,” J Natl Cancer Inst, vol. 103, no. 24, pp. 1827–1839, Dec. 2011, doi: 10.1093/JNCI/DJR483.
[74] A. Snyder, M. Valdebran, D. Terrero, K. T. Amber, and K. M. Kelly, “Solar Ultraviolet Exposure in Individuals Who Perform Outdoor Sport Activities,” Dec. 01, 2020, Springer Science and Business Media Deutschland GmbH. doi: 10.1186/s40798-020-00272-9.
[75] H. G. Bennett, L. A. Dahl, J. Furness, K. Kemp-Smith, and M. Climstein, “Skin cancer and sun protective behaviours in water-based sports: A scoping review,” Photodermatol Photoimmunol Photomed, vol. 38, no. 3, pp. 197–214, May 2022, doi: 10.1111/PHPP.12737.
[76] M. Climstein, J. Furness, W. Hing, and J. Walsh, “Lifetime prevalence of non-melanoma and melanoma skin cancer in Australian recreational and competitive surfers,” Photodermatol Photoimmunol Photomed, vol. 32, no. 4, pp. 207–213, Jul. 2016, doi: 10.1111/phpp.12247.
[77] F. Stölzel et al., “UV protection for young athletes: Using participatory program planning to develop a sports schools program,” Environ Health Prev Med, vol. 25, no. 1, Aug. 2020, doi: 10.1186/s12199-020-00872-7.
[78] M. S. Ally et al., “Promoting sunscreen use and sun-protective practices in NCAA athletes: Impact of SUNSPORT educational intervention for student-athletes, athletic trainers, and coaches,” J Am Acad Dermatol, vol. 78, no. 2, pp. 289-292.e2, Feb. 2018, doi: 10.1016/j.jaad.2017.08.050.
[79] A. E. Weikert, S. L. Pagoto, E. Handley, J. B. Courtney, D. Brunke-Reese, and D. E. Conroy, “Golfers’ interest in multilevel sun-protection strategies,” Int J Environ Res Public Health, vol. 18, no. 14, Jul. 2021, doi: 10.3390/ijerph18147253.
[80] S. McCarthy, L. Paul, and M. O’Connell, “Skin Cancer Awareness Amongst Irish Golfers.,” Ir Med J, vol. 110, no. 7, p. 620, Aug. 2017.
[81] G. de Castro Maqueda, J. V. Gutiérrez-Manzanedo, J. L. González-Montesinos, C. Vaz Pardal, F. Rivas Ruiz, and M. de Troya Martín, “Sun Exposure and Photoprotection: Habits, Knowledge and Attitudes Among Elite Kitesurfers,” Journal of Cancer Education, vol. 37, no. 3, pp. 517–523, Jun. 2022, doi: 10.1007/s13187-020-01838-7.
[82] J. V. Gutiérrez-Manzanedo et al., “Ultraviolet sun exposure and sun protection behaviors in outdoor rock climbers,” Photochemical and Photobiological Sciences, vol. 22, no. 12, pp. 2817–2826, Dec. 2023, doi: 10.1007/s43630-023-00488-0.
[83] G. De Castro-Maqueda, J. V. Gutierrez-Manzanedo, C. Lagares-Franco, M. Linares-Barrios, and M. De Troya-Martin, “Photoprotection practices, knowledge and sun-related skin damage in Spanish beach handball players,” PeerJ, vol. 2019, no. 6, 2019, doi: 10.7717/peerj.7030.
[84] M. Buljan, M. Kolić, M. Šitum, M. Šekerija, and N. Franceschi, “Do Athletes Practicing Outdoors Know and Care Enough About the Importance of Photoprotection?,” Acta Dermatovenerol Croat, vol. 28, no. 1, pp. 41–42, Jul. 2020.
[85] G. De Castro-Maqueda, J. V. Gutierrez-Manzanedo, J. G. Ponce-González, J. R. Fernandez-Santos, M. Linares-Barrios, and M. De Troya-Martín, “Sun Protection Habits and Sunburn in Elite Aquatics Athletes: Surfers, Windsurfers and Olympic Sailors,” Journal of Cancer Education, vol. 35, no. 2, pp. 312–320, Apr. 2020, doi: 10.1007/s13187-018-1466-x.
[86] D. Doncel Molinero et al., “Sun Protection Behaviour and Sunburns in Spanish Cyclists.,” J Cancer Educ, vol. 37, no. 4, pp. 957–964, Aug. 2022, doi: 10.1007/s13187-020-01906-y.
[87] I. J. Miller et al., “Implementation of artificial intelligence for the detection of cutaneous melanoma within a primary care setting: prevalence and types of skin cancer in outdoor enthusiasts,” PeerJ, vol. 11, 2023, doi: 10.7717/peerj.15737.
[88] G. Wei, J. Farooq, L. Castelo-Soccio, and R. Mhaskar, “Correlates Between Physical Activity and Sunburn Prevalence Among a Nationally Representative Sample of US High School Students, 2015-2017.,” J Phys Act Health, vol. 18, no. 9, pp. 1113–1119, Sep. 2021, doi: 10.1123/jpah.2020-0711.
[89] A. C. Dona, P. Jewett, C. Henning-Smith, R. L. Ahmed, D. A. Lazovich, and R. I. Vogel, “Rural-urban differences in meeting of physical activity recommendations by sun exposure and protection behaviors in the United States,” in Preventive Medicine, Academic Press Inc., Apr. 2024. doi: 10.1016/j.ypmed.2024.107919.
[90] Y. P. Wu et al., “Outdoor activities and sunburn among urban and rural families in a Western region of the US: Implications for skin cancer prevention,” Prev Med Rep, vol. 29, Oct. 2022, doi: 10.1016/j.pmedr.2022.101914.
[91] D. R. Barón et al., “Occupational Sun Exposure Among Physical Education Teachers in Primary and Secondary Schools in Andalusia, Spain,” Journal of Cancer Education, vol. 38, no. 4, pp. 1157–1162, Aug. 2023, doi: 10.1007/s13187-022-02242-z.
[92] G. De Castro-Maqueda, J. V. Gutierrez-Manzanedo, J. R. Fernandez-Santos, M. Linares-Barrios, and M. De Troya Martín, “Sun Protection Habits and Sun Exposure of Physical Education Teachers in the South of Spain,” Photochem Photobiol, vol. 95, no. 6, pp. 1468–1472, Nov. 2019, doi: 10.1111/php.13147.
[93] N. Blázquez-Sánchez et al., “Photoprotection habits, attitudes and knowledge among school communities in the Costa del sol (Spain),” Eur J Public Health, vol. 31, no. 3, pp. 508–514, Jun. 2021, doi: 10.1093/eurpub/ckab010.
[94] A. S. Tenforde, M. Fredericson, K. E. S. Toth, and K. L. Sainani, “Sun Protective Behaviors and Attitudes of Runners,” Sports, vol. 10, no. 1, Jan. 2022, doi: 10.3390/sports10010001.
[95] T. Fernández-Morano et al., “Sun Exposure Habits and Sun Protection Practices of Skaters,” Journal of Cancer Education, vol. 32, no. 4, pp. 734–739, Dec. 2017, doi: 10.1007/s13187-016-1036-z.
[96] C. M. Olsen, H. J. Carroll, and D. C. Whiteman, “Estimating the attributable fraction for cancer: A meta-analysis of nevi and melanoma,” Cancer Prev Res (Phila), vol. 3, no. 2, pp. 233–245, Feb. 2010, doi: 10.1158/1940-6207.CAPR-09-0108.
[97] S. Gandini et al., “Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi,” Eur J Cancer, vol. 41, no. 1, pp. 28–44, 2005, doi: 10.1016/J.EJCA.2004.10.015.
[98] S. Caini et al., “Meta-analysis of risk factors for cutaneous melanoma according to anatomical site and clinico-pathological variant,” Eur J Cancer, vol. 45, no. 17, pp. 3054–3063, Nov. 2009, doi: 10.1016/J.EJCA.2009.05.009.
[99] L. K. Dennis, M. J. Vanbeek, L. E. Beane Freeman, B. J. Smith, D. V. Dawson, and J. A. Coughlin, “Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis,” Ann Epidemiol, vol. 18, no. 8, pp. 614–627, Aug. 2008, doi: 10.1016/J.ANNEPIDEM.2008.04.006.
[100] A. R. Shors, C. Solomon, A. McTiernan, and E. White, “Melanoma risk in relation to height, weight, and exercise (United States),” Cancer Causes Control, vol. 12, no. 7, pp. 599–606, 2001, doi: 10.1023/A:1011211615524.
[101] M. É. Parent, M. C. Rousseau, M. El-Zein, B. Latreille, M. Désy, and J. Siemiatycki, “Occupational and recreational physical activity during adult life and the risk of cancer among men,” Cancer Epidemiol, vol. 35, no. 2, pp. 151–159, Apr. 2011, doi: 10.1016/J.CANEP.2010.09.004.
[102] H. Gogas et al., “Melanoma risk in association with serum leptin levels and lifestyle parameters: a case-control study,” Ann Oncol, vol. 19, no. 2, pp. 384–389, 2008, doi: 10.1093/ANNONC/MDM464.
[103] B. Lauby-Secretan, C. Scoccianti, D. Loomis, Y. Grosse, F. Bianchini, and K. Straif, “Body Fatness and Cancer--Viewpoint of the IARC Working Group,” N Engl J Med, vol. 375, no. 8, pp. 794–798, Aug. 2016, doi: 10.1056/NEJMSR1606602.
[104] C. H. Lee, Y. C. Woo, Y. Wang, C. Y. Yeung, A. Xu, and K. S. L. Lam, “Obesity, adipokines and cancer: an update,” Clin Endocrinol (Oxf), vol. 83, no. 2, pp. 147–156, Aug. 2015, doi: 10.1111/CEN.12667.
[105] M. Pollak, “Insulin and insulin-like growth factor signalling in neoplasia,” Nat Rev Cancer, vol. 8, no. 12, pp. 915–928, Dec. 2008, doi: 10.1038/NRC2536.
[106] N. M. Iyengar, A. Gucalp, A. J. Dannenberg, and C. A. Hudis, “Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation,” J Clin Oncol, vol. 34, no. 35, pp. 4270–4276, Dec. 2016, doi: 10.1200/JCO.2016.67.4283.
[107] C. J. Andersen, K. E. Murphy, and M. L. Fernandez, “Impact of Obesity and Metabolic Syndrome on Immunity,” Adv Nutr, vol. 7, no. 1, pp. 66–75, 2016, doi: 10.3945/AN.115.010207.
[108] E. L. Brandon, J. W. Gu, L. Cantwell, Z. He, G. Wallace, and J. E. Hall, “Obesity promotes melanoma tumor growth: role of leptin,” Cancer Biol Ther, vol. 8, no. 19, pp. 1871–1879, Oct. 2009, doi: 10.4161/CBT.8.19.9650.
[109] F. Amjadi, S. H. Javanmard, H. Zarkesh-Esfahani, M. Khazaei, and M. Narimani, “Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production,” J Exp Clin Cancer Res, vol. 30, no. 1, 2011, doi: 10.1186/1756-9966-30-21.
[110] J. Oba et al., “Elevated Serum Leptin Levels are Associated With an Increased Risk of Sentinel Lymph Node Metastasis in Cutaneous Melanoma,” Medicine, vol. 95, no. 11, 2016, doi: 10.1097/MD.0000000000003073.
[111] H. Gogas et al., “Melanoma risk in association with serum leptin levels and lifestyle parameters: a case-control study,” Ann Oncol, vol. 19, no. 2, pp. 384–389, 2008, doi: 10.1093/ANNONC/MDM464.
[112] M. Zhang et al., “Adipocyte-Derived Lipids Mediate Melanoma Progression via FATP Proteins,” Cancer Discov, vol. 8, no. 8, pp. 1006–1025, Aug. 2018, doi: 10.1158/2159-8290.CD-17-1371.
[113] A. B. Warner and J. L. McQuade, “Modifiable Host Factors in Melanoma: Emerging Evidence for Obesity, Diet, Exercise, and the Microbiome,” Curr Oncol Rep, vol. 21, no. 8, Aug. 2019, doi: 10.1007/s11912-019-0814-2.
[114] B. J. Caan et al., “Explaining the Obesity Paradox: The Association between Body Composition and Colorectal Cancer Survival (C-SCANS Study),” Cancer Epidemiol Biomarkers Prev, vol. 26, no. 7, pp. 1008–1015, Jul. 2017, doi: 10.1158/1055-9965.EPI-17-0200.
[115] J. L. McQuade et al., “Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis,” Lancet Oncol, vol. 19, no. 3, pp. 310–322, Mar. 2018, doi: 10.1016/S1470-2045(18)30078-0.
[116] H. Lennon, M. Sperrin, E. Badrick, and A. G. Renehan, “The Obesity Paradox in Cancer: a Review,” Curr Oncol Rep, vol. 18, no. 9, Sep. 2016, doi: 10.1007/S11912-016-0539-4.
[117] A. G. Renehan and M. Sperrin, “The Obesity Paradox and Mortality After Colorectal Cancer: A Causal Conundrum,” JAMA Oncol, vol. 2, no. 9, pp. 1127–1129, Sep. 2016, doi: 10.1001/JAMAONCOL.2016.0868.
[118] J. L. McQuade, C. R. Daniel, and M. A. Davies, “Body-mass index and metastatic melanoma outcomes - Authors’ reply,” Lancet Oncol, vol. 19, no. 5, pp. e227–e228, May 2018, doi: 10.1016/S1470-2045(18)30266-3.
[119] A. Joosse et al., “Superior outcome of women with stage I/II cutaneous melanoma: pooled analysis of four European Organisation for Research and Treatment of Cancer phase III trials,” J Clin Oncol, vol. 30, no. 18, pp. 2240–2247, Jun. 2012, doi: 10.1200/JCO.2011.38.0584.
[120] A. Joosse et al., “Sex is an independent prognostic indicator for survival and relapse/progression-free survival in metastasized stage III to IV melanoma: a pooled analysis of five European organisation for research and treatment of cancer randomized controlled trials,” J Clin Oncol, vol. 31, no. 18, pp. 2337–2346, Jun. 2013, doi: 10.1200/JCO.2012.44.5031.
[121] A. Piotrowska, J. Wierzbicka, and M. A. Zmijewski, “Vitamin D in the skin physiology and pathology,” Acta Biochim Pol, vol. 63, no. 1, pp. 17–29, 2016, doi: 10.18388/ABP.2015_1104.
[122] J. Reichrath and K. Rass, “Ultraviolet damage, DNA repair and vitamin D in nonmelanoma skin cancer and in malignant melanoma: an update,” Adv Exp Med Biol, vol. 810, pp. 208–233, 2014, doi: 10.1007/978-1-4939-0437-2_12.
[123] M. F. Holick, T. C. Chen, Z. Lu, and E. Sauter, “Vitamin D and skin physiology: a D-lightful story,” J Bone Miner Res, vol. 22 Suppl 2, no. SUPPL. 2, Dec. 2007, doi: 10.1359/JBMR.07S211.
[124] M. F. Holick, “Vitamin D: a d-lightful solution for health,” J Investig Med, vol. 59, no. 6, pp. 872–880, 2011, doi: 10.2310/JIM.0B013E318214EA2D.
[125] J. B. Cheng, M. A. Levine, N. H. Bell, D. J. Mangelsdorf, and D. W. Russell, “Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase,” Proc Natl Acad Sci U S A, vol. 101, no. 20, pp. 7711–7715, May 2004, doi: 10.1073/PNAS.0402490101.
[126] N. Strushkevich, S. A. Usanov, A. N. Plotnikov, G. Jones, and H. W. Park, “Structural analysis of CYP2R1 in complex with vitamin D3,” J Mol Biol, vol. 380, no. 1, pp. 95–106, Jun. 2008, doi: 10.1016/J.JMB.2008.03.065.
[127] S. Field, J. Davies, D. T. Bishop, and J. A. Newton-Bishop, “Vitamin D and melanoma,” Dermatoendocrinol, vol. 5, no. 1, pp. 121–129, Jan. 2013, doi: 10.4161/DERM.25244.
[128] P. Pludowski et al., “Vitamin d status in central europe,” Int J Endocrinol, vol. 2014, 2014, doi: 10.1155/2014/589587.
[129] J. Reichrath and B. Nürnberg, “Cutaneous vitamin D synthesis versus skin cancer development: The Janus faces of solar UV-radiation,” Dermatoendocrinol, vol. 1, no. 5, pp. 253–261, Sep. 2009, doi: 10.4161/DERM.1.5.9707.
[130] J. Pinczewski and A. Slominski, “The potential role of vitamin D in the progression of benign and malignant melanocytic neoplasms,” Exp Dermatol, vol. 19, no. 10, pp. 860–864, Oct. 2010, doi: 10.1111/J.1600-0625.2010.01169.X.
[131] J. A. Newton-Bishop et al., “Relationship between sun exposure and melanoma risk for tumours in different body sites in a large case-control study in a temperate climate,” Eur J Cancer, vol. 47, no. 5, pp. 732–741, Mar. 2011, doi: 10.1016/J.EJCA.2010.10.008.
[132] P. Szyszka, M. A. Zmijewski, and A. T. Slominski, “New vitamin D analogs as potential therapeutics in melanoma,” Expert Rev Anticancer Ther, vol. 12, no. 5, pp. 585–599, May 2012, doi: 10.1586/ERA.12.40.
[133] A. T. Slominski, T. K. Kim, W. Li, A. K. Yi, A. Postlethwaite, and R. C. Tuckey, “The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions,” J Steroid Biochem Mol Biol, vol. 144 Pt A, no. PART A, pp. 28–39, 2014, doi: 10.1016/J.JSBMB.2013.10.012.
[134] E. M. Burns, C. A. Elmets, and N. Yusuf, “Vitamin D and skin cancer,” Photochem Photobiol, vol. 91, no. 1, pp. 201–209, 2015, doi: 10.1111/PHP.12382.
[135] S. AT et al., “Novel vitamin D hydroxyderivatives inhibit melanoma growth and show differential effects on normal melanocytes,” Anticancer Res, vol. 32, no. 9, pp. 374–387, Mar. 2012, doi: 10.1016/J.HUMPATH.2012.03.031.
[136] J. E. Osborne and P. E. Hutchinson, “Vitamin D and systemic cancer: is this relevant to malignant melanoma?,” Br J Dermatol, vol. 147, no. 2, pp. 197–213, 2002, doi: 10.1046/J.1365-2133.2002.04960.X.
[137] P. De Haes et al., “1,25-Dihydroxyvitamin D3 and analogues protect primary human keratinocytes against UVB-induced DNA damage,” J Photochem Photobiol B, vol. 78, no. 2, pp. 141–148, Feb. 2005, doi: 10.1016/J.JPHOTOBIOL.2004.09.010.
[138] P. Gapska et al., “Vitamin D receptor variants and the malignant melanoma risk: a population-based study,” Cancer Epidemiol, vol. 33, no. 2, pp. 103–107, Aug. 2009, doi: 10.1016/J.CANEP.2009.06.006.
[139] W. Liu et al., “The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis,” Int J Mol Sci, vol. 19, no. 9, Sep. 2018, doi: 10.3390/IJMS19092736.
[140] F. Pandolfi, L. Franza, C. Mandolini, and P. Conti, “Immune Modulation by Vitamin D: Special Emphasis on Its Role in Prevention and Treatment of Cancer,” Clin Ther, vol. 39, no. 5, pp. 884–893, May 2017, doi: 10.1016/J.CLINTHERA.2017.03.012.
[141] M. Bendix et al., “Vitamin D increases programmed death receptor-1 expression in Crohn’s disease,” Oncotarget, vol. 8, no. 15, pp. 24177–24186, 2017, doi: 10.18632/ONCOTARGET.15489.
[142] V. Dimitrov et al., “Hormonal vitamin D up-regulates tissue-specific PD-L1 and PD-L2 surface glycoprotein expression in humans but not mice,” J Biol Chem, vol. 292, no. 50, pp. 20657–20668, Dec. 2017, doi: 10.1074/JBC.M117.793885.
[143] C. Daniel, N. A. Sartory, N. Zahn, H. H. Radeke, and J. M. Stein, “Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile,” J Pharmacol Exp Ther, vol. 324, no. 1, pp. 23–33, Jan. 2008, doi: 10.1124/JPET.107.127209.
[144] L. JM, A. DC, B. L, and S. HL, “Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions,” J Nutr, vol. 125, no. 6 Suppl, pp. 604S--615S, 1995, doi: 10.1093/JN/125.SUPPL_6.1704S.
[145] A. A. Brożyna, R. M. Hoffman, and A. T. Slominski, “Relevance of Vitamin D in Melanoma Development, Progression and Therapy,” Anticancer Res, vol. 40, no. 1, pp. 473–489, 2020, doi: 10.21873/ANTICANRES.13976.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Joanna Szuba, Magdalena Rędaszka, Oliwia Barańska, Małgorzata Chańko, Justyna Drożdżał, Adam Krzaczkowski, Emilia Niedzieska, Zofia Szular, Tymon Wojczulis, Katarzyna Ziemek

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 242
Number of citations: 0