Cardiac surgery and hemorheological parameters - a literature review
DOI:
https://doi.org/10.12775/QS.2025.43.61409Keywords
hematocrit, whole blood viscosity, plasma viscosity, shear rate, heart valve defects, aortic stenosis, mitral annulus calcification, CABG, endocarditis, transplantationsAbstract
Background. Some reports suggest that cardiac surgery may require monitoring of the patients' hemorheological parameters such as whole blood viscosity (WBV), plasma viscosity (PV), hematocrit (HCT), shear stress and shear rate..
Aim. This review article focuses on changes in hemorheological parameters of blood accompanying surgery for heart valve defects (focusing on aortic stenosis and mitral annulus calcification), coronary artery bypass grafting (CABG), surgical treatment of endocarditis and transplantations.
Material and methods. A comprehensive literature search was conducted using PubMed, Google Scholar and Web of Science with Key words.
Results. Patients who have undergone surgical treatment for heart valve defects suggest that changes in hemorheological parameters may correlate with a higher risk of postoperative death or the development of complications.
Conclusions. Considering the studies discussed in this article, hemorheological parameters may become significant indicators of the patient's condition and prognosis in the future, but the research is not complete yet.
References
[1] Vervoort D, Lee G, Ghandour H, et al. Global Cardiac Surgical Volume and Gaps: Trends, Targets, and Way Forward. Ann Thorac Surg Short Rep. 2023;2(2):320-324. Published 2023 Dec 9. doi:10.1016/j.atssr.2023.11.019
[2] Freitas Leal J, Vermeer H, Lazari D, et al. The impact of circulation in a heart-lung machine on function and survival characteristics of red blood cells. Artif Organs. 2020;44(8):892-899. doi:10.1111/aor.13682
[3] Valeanu L, Ginghina C, Bubenek-Turconi S. Blood Rheology Alterations in Patients with Cardiovascular Diseases. Rom J Anaesth Intensive Care. 2022;28(2):41-46. Published 2022 Dec 29. doi:10.2478/rjaic-2021-0007.
[4] Trejo-Soto C, Hernández-Machado A. Normalization of Blood Viscosity According to the Hematocrit and the Shear Rate. Micromachines (Basel). 2022;13(3):357. Published 2022 Feb 24. doi:10.3390/mi13030357
[5] Sloop GD, De Mast Q, Pop G, Weidman JJ, St Cyr JA. The Role of Blood Viscosity in Infectious Diseases. Cureus. 2020;12(2):e7090. Published 2020 Feb 24. doi:10.7759/cureus.7090
[6] Nader E, Skinner S, Romana M, et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front Physiol. 2019;10:1329. Published 2019 Oct 17. doi:10.3389/fphys.2019.01329
[7] Jørgensen LH, Møller VS, Revsholm J. Plasma viscosity: Evaluation of a new measuring method using microfluidic chip technology (microVisc™) for clinical use and determination of a new reference range. Ann Clin Biochem. 2020;57(3):249-252. doi:10.1177/0004563220920903
[8] Barral M, El-Sanharawi I, Dohan A, et al. Blood Flow and Shear Stress Allow Monitoring of Progression and Prognosis of Tumor Diseases. Front Physiol. 2021;12:693052. Published 2021 Aug 3. doi:10.3389/fphys.2021.693052
[9] Kishimoto S, Maruhashi T, Kajikawa M, et al. Hematocrit, hemoglobin and red blood cells are associated with vascular function and vascular structure in men. Sci Rep. 2020;10(1):11467. Published 2020 Jul 10. doi:10.1038/s41598-020-68319-1
[10] O'Donnell A, Yutzey KE. Mechanisms of heart valve development and disease. Development. 2020;147(13):dev183020. Published 2020 Jul 3. doi:10.1242/dev.183020
[11] Rabkin-Aikawa E, Mayer JE Jr, Schoen FJ. Heart valve regeneration. Adv Biochem Eng Biotechnol. 2005;94:141-179. doi:10.1007/b100003
[12] Shvartz V, Sokolskaya M, Petrosyan A, et al. Predictors of Mortality Following Aortic Valve Replacement in Aortic Stenosis Patients. Pathophysiology. 2022;29(1):106-117. Published 2022 Mar 9. doi:10.3390/pathophysiology29010
[13] Fanning JP, Roberts S, Anstey C, et al. Hemostatic Profiles of Patients Who Underwent Transcatheter Versus Surgical Aortic Valve Replacement Versus Percutaneous Coronary Intervention. Am J Cardiol. 2023;207:260-270. doi:10.1016/j.amjcard.2023.08.100
[14] Sexton T, Alkhasova M, de Beer M, Lynch D, Smyth S. Changes in thromboinflammatory profiles across the generations of transcatheter aortic heart valves. J Thromb Thrombolysis. 2019;47(2):174-178. doi:10.1007/s11239-018-1782-3
[15] Dvir D, Généreux P, Barbash IM, et al. Acquired thrombocytopenia after transcatheter aortic valve replacement: clinical correlates and association with outcomes. Eur Heart J. 2014;35(38):2663-2671. doi:10.1093/eurheartj/ehu082
[16] Al Haroun R, Al Jarallah M, Rajan R, et al. Clinical Outcomes after Transcatheter Aortic Valve Replacement Stratified by Hemoglobin Levels: A Retrospective Cohort Pilot Study. Annals of Clinical Cardiology. 2022;4(2):66-70. doi:10.4103/ACCJ.ACCJ_19_22
[17] Reddy P, Merdler I, Zhang C, et al. Impact of Significant Hemoglobin Drop Without Bleeding in Patients Undergoing Transcatheter Aortic Valve Replacement. J Am Heart Assoc. 2024;13(11):e032291. doi:10.1161/JAHA.123.032291
[18] Barakat AI. A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells. J Theor Biol. 2001;210(2):221-236. doi:10.1006/jtbi.2001.2290
[19] Sercelik A, Besnili AF. The Contribution of Whole Blood Viscosity to the Process of Aortic Valve Sclerosis. Med Princ Pract. 2018;27(2):173-178. doi:10.1159/000487509
[20] Fulkerson PK, Beaver BM, Auseon JC, Graber HL. Calcification of the mitral annulus: etiology, clinical associations, complications and therapy. Am J Med. 1979;66(6):967-977. doi:10.1016/0002-9343(79)90452-2
[21] Ozcan Cetin EH, Cetin MS, Canpolat U, et al. The Forgotten Variable of Shear Stress in Mitral Annular Calcification: Whole Blood Viscosity. Med Princ Pract. 2015;24(5):444-450. doi:10.1159/000431362
[22] Sloop GD, Garber DW. The effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis in humans. Clin Sci (Lond). 1997;92(5):473-479. doi:10.1042/cs0920473
[23] Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol. 2009;29(2):254-260. doi:10.1161/ATVBAHA.108.176347
[24] Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011;2011:263870. doi:10.4061/2011/263870
[25] Ayaon-Albarran A, Fernandez-Jimenez R, Silva-Guisasola J, et al. Systolic flow displacement using 3D magnetic resonance imaging in an experimental model of ascending aorta aneurysm: impact of rheological factors. Eur J Cardiothorac Surg. 2016;50(4):685-692. doi:10.1093/ejcts/ezw132
[26] Trenti C, Fedak PWM, White JA, Garcia J, Dyverfeldt P. Oscillatory shear stress is elevated in patients with bicuspid aortic valve and aortic regurgitation: a 4D flow cardiovascular magnetic resonance cross-sectional study. Eur Heart J Cardiovasc Imaging. 2024;25(3):404-412. doi:10.1093/ehjci/jead283
[27] Isobe N, Kaneko T, Taniguchi K, Oshima S. Comparison of the rheologic parameters in left internal thoracic artery grafts with those in saphenous vein grafts. Circ J. 2005;69(6):700-706. doi:10.1253/circj.69.700
[28] Grondin CM, Campeau L, Lespérance J, Enjalbert M, Bourassa MG. Comparison of late changes in internal mammary artery and saphenous vein grafts in two consecutive series of patients 10 years after operation. Circulation. 1984;70(3 Pt 2):I208-I212.
[29] Cameron AA, Green GE, Brogno DA, Thornton J. Internal thoracic artery grafts: 20-year clinical follow-up. J Am Coll Cardiol. 1995;25(1):188-192. doi:10.1016/0735-1097(94)00332-k
[30] Miller VM, Burnett JC Jr. Modulation of NO and endothelin by chronic increases in blood flow in canine femoral arteries. Am J Physiol. 1992;263(1 Pt 2):H103-H108. doi:10.1152/ajpheart.1992.263.1.H103
[31] Papp J, Toth A, Sandor B, et al. The influence of on-pump and off-pump coronary artery bypass grafting on hemorheological parameters. Clin Hemorheol Microcirc. 2011;49(1-4):331-346. doi:10.3233/CH-2011-1484
[32] Quin JA, Wagner TH, Hattler B, et al. Ten-Year Outcomes of Off-Pump vs On-Pump Coronary Artery Bypass Grafting in the Department of Veterans Affairs: A Randomized Clinical Trial. JAMA Surg. 2022;157(4):303-310. doi:10.1001/jamasurg.2021.7578
[33] Hsu PS, Chen JL, Sung SY, et al. Inflammatory Biomarkers and Blood Physical Property Transformations Following On-Pump Coronary Artery Bypass Graft Surgery. J Pers Med. 2023;13(10):1434. Published 2023 Sep 26. doi:10.3390/jpm13101434
[34] Gauger MS, Kaufmann P, Kamber F, et al. Rotational Thromboelastometry Values After On-Pump Cardiac Surgery - A Retrospective Cohort Study. Semin Cardiothorac Vasc Anesth. 2022;26(3):209-220. doi:10.1177/10892532221088216
[35] Agarwal S, Abdelmotieleb M. Viscoelastic testing in cardiac surgery. Transfusion. 2020;60 Suppl 6:S52-S60. doi:10.1111/trf.16075
[36] Meco M, Montisci A, Giustiniano E, et al. Viscoelastic Blood Tests Use in Adult Cardiac Surgery: Meta-Analysis, Meta-Regression, and Trial Sequential Analysis. J Cardiothorac Vasc Anesth. 2020;34(1):119-127. doi:10.1053/j.jvca.2019.06.030
[37] Rajzer M, Palka I, Kawecka-Jaszcz K. The role of the blood viscosity in the pathogenesis of the arterial hypertension. Nadcisnienie Tetnicze. 2007;11:1-11.
[38] Vlot EA, van Dongen EPA, Willemsen LM, et al. Association of Plasma Fibrinogen and Thromboelastography With Blood Loss in Complex Cardiac Surgery. Clin Appl Thromb Hemost. 2021;27:10760296211016541. doi:10.1177/10760296211016541
[39] Huang C, Zhang W, Chen X, Xu X, Qiu J, Pan Z. Fibrinogen is an independent preoperative predictor of hospital length of stay among patients undergoing coronary artery bypass grafting. J Cardiothorac Surg. 2023;18(1):112. Published 2023 Apr 7. doi:10.1186/s13019-023-02238-w
[40] Burmeister A, Vidal-Y-Sy S, Liu X, et al. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front Immunol. 2022;13:1078891. Published 2022 Dec 16. doi:10.3389/fimmu.2022.1078891
[41] Lowe GDO, Harris K, Koenig W, et al. Plasma viscosity, immunoglobulins and risk of cardiovascular disease and mortality: new data and meta-analyses. J Clin Pathol. 2024;77(6):394-401. Published 2024 May 17. doi:10.1136/jcp-2022-208223
[42] Schwann TA, Vekstein AM, Engoren M, et al. Perioperative Anemia and Transfusions and Late Mortality in Coronary Artery Bypass Patients. Ann Thorac Surg. 2023;115(3):759-769. doi:10.1016/j.athoracsur.2022.11.012
[43] Zapolski T, Styczeń A, Wysokiński A. Infekcyjne zapalenie wsierdzia w wytycznych Europejskiego Towarzystwa Kardiologicznego 2015 — co uległo zmianie od roku 2009? Folia Cardiologica. 2016;11(4):293-302.
[44] Selton-Suty C, Célard M, Le Moing V, et al. Preeminence of Staphylococcus aureus in infective endocarditis: a 1-year population-based survey. Clin Infect Dis. 2012;54(9):1230-1239. doi:10.1093/cid/cis199
[45] Murdoch DR, Corey GR, Hoen B, et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med. 2009;169(5):463-473. doi:10.1001/archinternmed.2008.603
[46] Rajani R, Klein JL. Infective endocarditis: A contemporary update. Clin Med (Lond). 2020;20(1):31-35. doi:10.7861/clinmed.cme.20.1.1
[47] Pettersson GB. Surgical treatment of endocarditis: current status. Tex Heart Inst J. 2011;38(6):667-668.
[48] Pettersson GB, Hussain ST. Current AATS guidelines on surgical treatment of infective endocarditis. Ann Cardiothorac Surg. 2019;8(6):630-644. doi:10.21037/acs.2019.10.05
[49] Wu YF, Hsu PS, Tsai CS, Pan PC, Chen YL. Significantly increased low shear rate viscosity, blood elastic modulus, and RBC aggregation in adults following cardiac surgery. Sci Rep. 2018;8(1):7173. Published 2018 May 8. doi:10.1038/s41598-018-25317-8
[50] Chakravarthy M. Modifying risks to improve outcome in cardiac surgery: An anesthesiologist's perspective. Ann Card Anaesth. 2017;20(2):226-233. doi:10.4103/aca.ACA_20_17
[51] Vlot EA, van Dongen EPA, Willemsen LM, et al. Association of Plasma Fibrinogen and Thromboelastography With Blood Loss in Complex Cardiac Surgery. Clin Appl Thromb Hemost. 2021;27:10760296211016541. doi:10.1177/10760296211016541
[52] Rzucidło-Resil J, Golińska-Grzybała K, Przybylski R, Kapelak B, Gajos G, Gackowski A. A complicated course of Salmonella endocarditis leading to heart transplantation. Kardiol Pol. 2022;80(9):945-946. doi:10.33963/KP.a2022.0176
[53] Shitanishi L, Fan A, Khuu T, et al. Direct oral anticoagulants versus warfarin in adult heart transplant recipients. JHLT Open. 2024;4:100061. Published 2024 Jan 24. doi:10.1016/j.jhlto.2024.100061
[54] Strand A, Gudmundsdottir H, Høieggen A, et al. Increased hematocrit before blood pressure in men who develop hypertension over 20 years. J Am Soc Hypertens. 2007;1(6):400-406. doi:10.1016/j.jash.2007.07.002
[55] Lee GB, Shin KE, Han K, et al. Association Between Hypertension and Incident Infective Endocarditis [published correction appears in Hypertension. 2022 Sep;79(9):e114. doi: 10.1161/HYP.0000000000000220.]. Hypertension. 2022;79(7):1466-1474. doi:10.1161/HYPERTENSIONAHA.122.19185
[56] Aronow WS. Management of hypertension in patients undergoing surgery. Ann Transl Med. 2017;5(10):227. doi:10.21037/atm.2017.03.54
[57] Awad MA, Shah A, Griffith BP. Current status and outcomes in heart transplantation: a narrative review. Rev Cardiovasc Med. 2022;23(1):11. doi:10.31083/j.rcm2301011
[58] Truby LK, Rogers JG. Advanced Heart Failure: Epidemiology, Diagnosis, and Therapeutic Approaches. JACC Heart Fail. 2020;8(7):523-536. doi:10.1016/j.jchf.2020.01.014
[59] Tikhomirova I, Petrochenko E, Muravyov A, et al. Microcirculation and blood rheology abnormalities in chronic heart failure. Clin Hemorheol Microcirc. 2017;65(4):383-391. doi:10.3233/CH-16206
[60] Bielecka A. Urządzenia wspomagające pracę komór: leczenie pomostowe do momentu uzyskania ponownej wydolności komory lub do czasu przeszczepu oraz leczenie docelowe. Folia Cardiologica. 2007;2(2):54-64.
[61] Adatya S, Bennett MK. Anticoagulation management in mechanical circulatory support. J Thorac Dis. 2015;7(12):2129-2138. doi:10.3978/j.issn.2072-1439.2015.10.65
[62] Besser MW. Post-operative of bleeding, haemolysis and coagulation in mechanical circulatory support patients. Ann Transl Med. 2020;8(13):832. doi:10.21037/atm-20-405
[63] Chan CHH, Inoue M, Ki KK, et al. Shear-dependent platelet aggregation size. Artif Organs. 2020;44(12):1286-1295. doi:10.1111/aor.13783
[64] Darche FF, Fabricius LC, Helmschrott M, et al. Oral Anticoagulants after Heart Transplantation-Comparison between Vitamin K Antagonists and Direct Oral Anticoagulants. J Clin Med. 2023;12(13):4334. Published 2023 Jun 28. doi:10.3390/jcm1213433
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Joanna Stężycka, Alicja Kolasa, Katarzyna Pomin, Krzysztof Stokłosa, Sandra Potrawiak, Kajetan Bergmann, Franciszek Kaczmarek, Anna Marcinkowska-Gapińska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 211
Number of citations: 0