High-Frequency Ultrasonography As An Innovative Diagnostic Method in Dermatology
DOI:
https://doi.org/10.12775/QS.2025.43.61400Keywords
dermatology, high frequency ultrasonography, melanoma, basal-cell carcinomaAbstract
Ultrasonography is now a standard, non-invasive imaging technique used in many areas of medical diagnostics. Currently it is also an important tool in the diagnosis of skin diseases. In clinical practice, High Frequency Ultrasonography (HFU) is used more and more often because it has proved to be a valuable diagnostic tool for assessing the condition of skin tissue. The physical conditions of HFU make it possible to estimate the parameters of the skin structure, such as thickness and echogenicity (a feature related to the center) of its layers in relation to the surrounding tissues. Therefore, HFU allows to obtain information concerning the condition of the examined area of the skin., the rate of lession development and the effectiveness of implemented theraphy. HFU is applied in the imaging of focal skin lesions, including melanoma, basal-cell carcinoma, inflammatory skin diseases, diseases associated with its thickening and in aesthetic medicine and cosmetology. The aim of this chapter is to familiarize the reader interested in dermatology and in particular diagnostics in this field, the possibilities associated with the use of HFU.
Material and Methods – Narrative literature review combined with technical exposition of HFU devices (20–100 MHz mechanical and broadband linear probes). The authors summarise depth–resolution trade-offs, standard scanning protocols and representative clinical images to illustrate HFU performance across anatomical sites and skin conditions.
Findings – HFU resolves skin strata down to 10 μm, quantifies tumour thickness (Breslow depth) pre-operatively, delineates BCC margins, detects subepidermal low-echogenic band as a marker of photoageing or atopic dermatitis severity, and guides real-time assessment of fillers, vascular flow, oedema and fibrosis. Frequencies of 20–30 MHz visualise full dermis, 50 MHz epidermis/upper dermis, while lower (7–12 MHz) probes image deeper lesions and lymph nodes.
References
[1] Alexander H, Miller DL. Determining skin thickness with pulsed ultra sound. J Invest Dermatol. 1979;72(1):17-19. doi:10.1111/1523-1747.ep12530104
[2] Rajadhyaksha M, González S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113(3):293-303. doi:10.1046/j.1523-1747.1999.00690.x
[3] Hinz T, Ehler LK, Hornung T, et al. Preoperative characterization of basal cell carcinoma comparing tumour thickness measurement by optical coherence tomography, 20-MHz ultrasound and histopathology. Acta Derm Venereol. 2012;92(2):132-137. doi:10.2340/00015555-1231
[4] Schmid-Wendtner MH, Dill-Müller D. Ultrasound technology in dermatology. Semin Cutan Med Surg. 2008;27(1):44-51. doi:10.1016/j.sder.2008.01.003
[5] Schneider SL, Kohli I, Hamzavi IH, Council ML, Rossi AM, Ozog DM. Emerging imaging technologies in dermatology: Part I: Basic principles. J Am Acad Dermatol. 2019;80(4):1114-1120. doi:10.1016/j.jaad.2018.11.042
[6] Dill-Müller D, Maschke J. Ultrasonography in dermatology. J Dtsch Dermatol Ges. 2007;5(8):689-707. doi:10.1111/j.1610-0387.2007.06453.x
[7] Jasaitiene D, Valiukeviciene S, Linkeviciute G, Raisutis R, Jasiuniene E, Kazys R. Principles of high-frequency ultrasonography for investigation of skin pathology. J Eur Acad Dermatol Venereol. 2011;25(4):375-382. doi:10.1111/j.1468-3083.2010.03837.x
[8] Jemec GB, Gniadecka M, Ulrich J. Ultrasound in dermatology. Part I. High frequency ultrasound. Eur J Dermatol. 2000;10(6):492-497.
[9] Kleinerman R, Whang TB, Bard RL, Marmur ES. Ultrasound in dermatology: principles and applications. J Am Acad Dermatol. 2012;67(3):478-487. doi:10.1016/j.jaad.2011.12.016
[10] Alfageme F, Wortsman X, Catalano O, et al. European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) Position Statement on Dermatologic Ultrasound. Stellungnahme der European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) zu Dermatologischem Ultraschall. Ultraschall Med. 2021;42(1):39-47. doi:10.1055/a-1161-8872
[11] Mlosek RK, Migda B, Migda M. wysoka częstotliwość ultradźwięków w 21 st wieku. J Ultrason . 2021; 20 (83): e233-e241. doi: 10.15557 / JoU.2020.0042
[12] Polańska A, Dańczak-Pazdrowska A, Jałowska M, Żaba R, Adamski Z. Current applications of high-frequency ultrasonography in dermatology. Postepy Dermatol Alergol. 2017;34(6):535-542. doi:10.5114/ada.2017.72457
[13] Wortsman X. Ultrasound in d12ermatology: why, how, and when?. Semin Ultrasound CT MR. 2013;34(3):177-195. doi:10.1053/j.sult.2012.10.001
[14] Hoffmann K, Dirschka T, Schwarze H, et al. 20 MHz sonography, colorimetry and image analysis in the evaluation of psoriasis vulgaris. J Dermatol Sci. 1995;9(2):103-110. doi:10.1016/0923-1811(94)00358-l
[15] Cammarota T, Pinto F, Magliaro A, Sarno A. Current uses of diagnostic high-frequency US in dermatology. Eur J Radiol. 1998;27 Suppl 2:S215-S223. doi:10.1016/s0720-048x(98)00065-5
[16] Seidenari S. High-frequency sonography combined with image analysis: a noninvasive objective method for skin evaluation and description. Clin Dermatol. 1995;13(4):349-359. doi:10.1016/0738-081x(95)00074-p
[17] Olsen LO, Takiwaki H, Serup J. High-frequency ultrasound characterization of normal skin. Skin thickness and echographic density of 22 anatomical sites. Skin Res Technol. 1995;1(2):74-80. doi:10.1111/j.1600-0846.1995.tb00021.x
[18] Waller JM, Maibach HI. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol. 2005;11(4):221-235. doi:10.1111/j.0909-725X.2005.00151.x
[19] de Rigal J, Escoffier C, Querleux B, Faivre B, Agache P, Lévêque JL. Assessment of aging of the human skin by in vivo ultrasonic imaging. J Invest Dermatol. 1989;93(5):621-625. doi:10.1111/1523-1747.ep12319741
[20] Sandby-Møller J, Thieden E, Philipsen PA, Schmidt G, Wulf HC. Dermal echogenicity: a biological indicator of individual cumulative UVR exposure?. Arch Dermatol Res. 2004;295(11):498-504. doi:10.1007/s00403-004-0454-7
[21] Lacarrubba F, Tedeschi A, Nardone B, Micali G. Mesotherapy for skin rejuvenation: assessment of the subepidermal low-echogenic band by ultrasound evaluation with cross-sectional B-mode scanning. Dermatol Ther. 2008;21 Suppl 3:S1-S5. doi:10.1111/j.1529-8019.2008.00234.x
[22] Alfageme Roldán F. Elastography in Dermatology. Elastografía en dermatología. Actas Dermosifiliogr. 2016;107(8):652-660. doi:10.1016/j.ad.2016.05.004
[23] Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28(6):1005-1011.
[24] Forsea AM, Del Marmol V, de Vries E, Bailey EE, Geller AC. Melanoma incidence and mortality in Europe: new estimates, persistent disparities. Br J Dermatol. 2012;167(5):1124-1130. doi:10.1111/j.1365-2133.2012.11125.x
[25] Piłat P, Borzęcki A, Jazienicki M, Krasowska D. Skin melanoma imaging using ultrasonography: a literature review. Postepy Dermatol Alergol. 2018;35(3):238-242. doi:10.5114/ada.2018.76211
[26] Crincoli E, Moliterni E, Catania F, Didona D, Calvieri S, Paolino G. Correlation of serum tryptase levels with total number of nevi, Breslow thickness, ulceration, and mitotic index in melanoma patients: evaluation of a promising prognostic marker. Melanoma Res. 2019;29(6):621-625. doi:10.1097/CMR.0000000000000561
[27] Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199-6206. doi:10.1200/JCO.2009.23.4799
[28] Fong ZV, Tanabe KK. Comparison of melanoma guidelines in the U.S.A., Canada, Europe, Australia and New Zealand: a critical appraisal and comprehensive review. Br J Dermatol. 2014;170(1):20-30. doi:10.1111/bjd.12687
[29] Nagore E, Oliver V, Botella-Estrada R, Moreno-Picot S, Insa A, Fortea JM. Prognostic factors in localized invasive cutaneous melanoma: high value of mitotic rate, vascular invasion and microscopic satellitosis. Melanoma Res. 2005;15(3):169-177. doi:10.1097/00008390-200506000-00005
[30] Sondak VK, Gibney GT. Indications and options for systemic therapy in melanoma. Surg Clin North Am. 2014;94(5):1049-viii. doi:10.1016/j.suc.2014.07.007
[31] Morton DL, Cochran AJ, Thompson JF. The rationale for sentinel-node biopsy in primary melanoma. Nat Clin Pract Oncol. 2008;5(9):510-511. doi:10.1038/ncponc1205
[32] Pellacani G, Seidenari S. Preoperative melanoma thickness determination by 20-MHz sonography and digital videomicroscopy in combination. Arch Dermatol. 2003;139(3):293-298. doi:10.1001/archderm.139.3.293
[33] Tacke J, Haagen G, Hornstein OP, et al. Clinical relevance of sonometry-derived tumour thickness in malignant melanoma--a statistical analysis. Br J Dermatol. 1995;132(2):209-214. doi:10.1111/j.1365-2133.1995.tb05015.x
[34] Lassau N, Koscielny S, Avril MF, et al. Prognostic value of angiogenesis evaluated with high-frequency and color Doppler sonography for preoperative assessment of melanomas. AJR Am J Roentgenol. 2002;178(6):1547-1551. doi:10.2214/ajr.178.6.1781547
[35] Serrone L, Solivetti FM, Thorel MF, Eibenschutz L, Donati P, Catricalà C. High frequency ultrasound in the preoperative staging of primary melanoma: a statistical analysis. Melanoma Res. 2002;12(3):287-290. doi:10.1097/00008390-200206000-00013
[36] Guitera P, Li LX, Crotty K, et al. Melanoma histological Breslow thickness predicted by 75-MHz ultrasonography. Br J Dermatol. 2008;159(2):364-369. doi:10.1111/j.1365-2133.2008.08681.x
[37] Hayashi K, Koga H, Uhara H, Saida T. High-frequency 30-MHz sonography in preoperative assessment of tumor thickness of primary melanoma: usefulness in determination of surgical margin and indication for sentinel lymph node biopsy. Int J Clin Oncol. 2009;14(5):426-430. doi:10.1007/s10147-009-0894-3
[38] Harland CC, Kale SG, Jackson P, Mortimer PS, Bamber JC. Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound. Br J Dermatol. 2000;143(2):281-289. doi:10.1046/j.1365-2133.2000.03652.x
[39] McDaniel B, Badri T, Steele RB. Basal Cell Carcinoma. In: StatPearls. Treasure Island (FL): StatPearls Publishing; November 20, 2020.
[40] Fornage BD, McGavran MH, Duvic M, Waldron CA. Imaging of the skin with 20-MHz US. Radiology. 1993;189(1):69-76. doi:10.1148/radiology.189.1.8372222
[41] Tedstone JL, Richards SM, Garman RD, Ruzek MC. Ultrasound imaging accurately detects skin thickening in a mouse scleroderma model. Ultrasound Med Biol. 2008;34(8):1239-1247. doi:10.1016/j.ultrasmedbio.2008.01.013
[42] Dańczak-Pazdrowska A, Polańska A, Silny W, et al. Seemingly healthy skin in atopic dermatitis: observations with the use of high-frequency ultrasonography, preliminary study. Skin Res Technol. 2012;18(2):162-167. doi:10.1111/j.1600-0846.2011.00548.x
[43] Rallan D, Harland CC. Ultrasound in dermatology--basic principles and applications. Clin Exp Dermatol. 2003;28(6):632-638. doi:10.1046/j.1365-2230.2003.01405.x
[44] Gniadecka M. Dermal oedema in lipodermatosclerosis: distribution, effects of posture and compressive theraphy evaluated by high-frequency ultrasonography. Acta Derm Venereol. 1995;75(2):120-124. doi:10.2340/0001555575120124
[45] Polańska A, Dańczak-Pazdrowska A, Silny W, et al. Comparison between high-frequency ultrasonography (Dermascan C, version 3) and histopathology in atopic dermatitis. Skin Res Technol. 2013;19(4):432-437. doi:10.1111/srt.12064
[46] Osmola-Mańkowska A, Polańska A, Silny W, Żaba R, Adamski Z, Dańczak-Pazdrowska A. Topical tacrolimus vs medium-dose ultraviolet A1 phototherapy in the treatment of atopic dermatitis - a preliminary study in relation to parameters of the epidermal barrier function and high-frequency ultrasonography. Eur Rev Med Pharmacol Sci. 2014;18(24):3927-3934.
[47] Gupta AK, Turnbull DH, Harasiewicz KA, et al. The use of high-frequency ultrasound as a method of assessing the severity of a plaque of psoriasis. Arch Dermatol. 1996;132(6):658-662.
[48] Gniadecka M, Gniadecki R, Serup J, Søndergaard J. Ultrasound structure and digital image analysis of the subepidermal low echogenic band in aged human skin: diurnal changes and interindividual variability. J Invest Dermatol. 1994;102(3):362-365. doi:10.1111/1523-1747.ep12371796
[49] Wortsman X, Wortsman J, Orlandi C, Cardenas G, Sazunic I, Jemec GB. Ultrasound detection and identification of cosmetic fillers in the skin. J Eur Acad Dermatol Venereol. 2012;26(3):292-301. doi:10.1111/j.1468-3083.2011.04047.x
[50] Quezada-Gaon N, Wortsman X, Peñaloza O, Carrasco JE. Comparison of clinical marking and ultrasound-guided injection of Botulinum type A toxin into the masseter muscles for treating bruxism and its cosmetic effects. J Cosmet Dermatol. 2016;15(3):238-244. doi:10.1111/jocd.12208
[51] Schelke LW, Van Den Elzen HJ, Erkamp PP, Neumann HA. Use of ultrasound to provide overall information on facial fillers and surrounding tissue. Dermatol Surg. 2010;36 Suppl 3:1843-1851. doi:10.1111/j.1524-4725.2010.01740.x
[52] Mlosek RK, Skrzypek E, Skrzypek DM, Malinowska S. High-frequency ultrasound-based differentiation between nodular dermal filler deposits and foreign body granulomas. Skin Res Technol. 2018;24(3):417-422. doi:10.1111/srt.12444
[53] Sylwia M, Krzysztof MR. Efficacy of intradermal mesotherapy in cellulite reduction - Conventional and high-frequency ultrasound monitoring results. J Cosmet Laser Ther. 2017;19(6):320-324. doi:10.1080/14764172.2017.1334927
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aneta Rasińska, Piotr Rzyczniok, Anna Rzyczniok, Weronika Rasińska, Justyna Jachimczak, Filip Grydź, Joanna Filipow, Anna Rebizak, Paulina Bala, Aneta Rostkowska, Sebastian Kupisiak, Natalia Pasierb, Justyna Matusik, Mateusz Kopczyński

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 271
Number of citations: 0