The Role of Lactobacillus reuteri DSM 17938 in Athletic Performance and Recovery
DOI:
https://doi.org/10.12775/QS.2025.43.61342Keywords
Lactobacillus reuteri DSM 17938, probiotics, athletic performance, recovery, gut microbiota, inflammation, immunityAbstract
Introduction and purpose: The gut microbiota plays a vital role in modulating health, immunity, and recovery, all of which are crucial for athletes. Limosilactobacillus reuteri DSM 17938 is a well-documented probiotic strain with anti-inflammatory, immunomodulatory, and gastrointestinal benefits. This review explores its potential application in supporting athletic performance and post-exercise recovery.
Material and method: A narrative literature review was conducted using PubMed, Scopus, and Google Scholar databases. Articles published between 2000 and 2024 were included, with a focus on clinical and experimental studies evaluating the effects of L. reuteri DSM 17938 on gastrointestinal function, inflammation, immune response, and athletic outcomes.
Results: Evidence suggests that L. reuteri DSM 17938 contributes to gut barrier integrity, reduces exercise-related gastrointestinal discomfort, modulates inflammatory cytokines (e.g., IL-6, TNF-α), and supports immune function. While direct evidence linking this strain to improvements in performance metrics (e.g., endurance, VO₂max) is limited, its supportive role in recovery and resilience is promising.
Conclusions: L. reuteri DSM 17938 shows potential as a functional supplement for athletes, particularly in improving gut health, reducing inflammation, and enhancing immune defense. Further clinical research is needed to confirm its direct effects on athletic performance
References
[1] Feng W, Liu J, Cheng H, Zhang D, Tan Y, Peng C. Dietary Compounds in Modulation of Gut Microbiota-Derived Metabolites. Frontiers in Nutrition 2022;9. https://doi.org/10.3389/fnut.2022.939571.
[2] Isiaka AB, Anakwenze VN, Uzoka UH, Ilodinso CR, Oso MO, Ekwealor CC, et al. Exploring the Role of Gut Microbiota in Human Health. GSC Biological and Pharmaceutical Sciences 2024;27:051–9. https://doi.org/10.30574/gscbps.2024.27.1.0100.
[3] Zhang L, Liu Y, Xinzhou W, Zhang X. Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat Metabolic Disorders to Maintain Health. Nutrients 2023;15:1539. https://doi.org/10.3390/nu15061539.
[4] Marano G, Traversi G, Gaetani E, Gasbarrini A, Mazza M. Gut Microbiota in Women: The Secret of Psychological and Physical Well-Being. World Journal of Gastroenterology 2023;29:5945–52. https://doi.org/10.3748/wjg.v29.i45.5945.
[5] Yoo JY, McSkimming D, Rajan K, Sarkar A, Labbé N, Groër M, et al. A Preliminary Study Exploring the Relationship Between Occupational Health Hazards and Gut Microbiota Among Firefighters. Life 2023;13:1928. https://doi.org/10.3390/life13091928.
[6] Menezes DB, Bello FD, Brito CJ, Couto C, Ciro J, Miarka B. Journal of Physical Education and Sport 2019;2019. https://doi.org/10.7752/jpes.2019.01086.
[7] Hashimoto K. Gut–microbiota–brain Axis by Bile Acids in Depression. Psychiatry and Clinical Neurosciences 2022;76:281–281. https://doi.org/10.1111/pcn.13370.
[8] Zhou P, Chen C, Patil S, Dong S. Unveiling the Therapeutic Symphony of Probiotics, Prebiotics, and Postbiotics in Gut-Immune Harmony. Frontiers in Nutrition 2024;11. https://doi.org/10.3389/fnut.2024.1355542.
[9] Nami Y, Barghi A, Shahgolzari M, Salehian MH, Haghshenas B. Mechanism of Action and Beneficial Effects of Probiotics in Amateur and Professional Athletes. Food Science & Nutrition 2024;13. https://doi.org/10.1002/fsn3.4658.
[10] Smarkusz-Zarzecka J, Ostrowska L, Leszczyńska J, Cwalina U. Effect of a Multi-Strain Probiotic Supplement on Gastrointestinal Symptoms and Serum Biochemical Parameters of Long-Distance Runners: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health 2022;19:9363. https://doi.org/10.3390/ijerph19159363.
[11] Díaz-Jiménez J, Sánchez-Sánchez E, Ordóñez FJ, Rosety I, Díaz AJ, Rosety-Rodríguez M, et al. Impact of Probiotics on the Performance of Endurance Athletes: A Systematic Review. International Journal of Environmental Research and Public Health 2021;18:11576. https://doi.org/10.3390/ijerph182111576.
[12] Przewłócka K, Folwarski M, Kaczmarczyk M, Skonieczna‐Żydecka K, Palma J, Bytowska ZK, et al. Combined Probiotics With Vitamin D3 Supplementation Improved Aerobic Performance and Gut Microbiome Composition in Mixed Martial Arts Athletes. Frontiers in Nutrition 2023;10. https://doi.org/10.3389/fnut.2023.1256226.
[13] Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, et al. International Society of Sports Nutrition Position Stand: Probiotics. Journal of the International Society of Sports Nutrition 2019;16. https://doi.org/10.1186/s12970-019-0329-0.
[14] Sagheddu V, Uggeri F, Belogi L, Remollino L, Brun P, Bernabè G, et al. The Biotherapeutic Potential of Lactobacillus Reuteri Characterized Using a Target-Specific Selection Process. Frontiers in Microbiology 2020;11. https://doi.org/10.3389/fmicb.2020.00532.
[15] Rosander A, Connolly E, Roos S. Removal of Antibiotic Resistance Gene-Carrying Plasmids From Lactobacillus Reuteri ATCC 55730 and Characterization of the Resulting Daughter Strain, L . reuteri DSM 17938. Applied and Environmental Microbiology 2008;74:6032–40. https://doi.org/10.1128/aem.00991-08.
[16] Hoang TK, He B, Wang T, Tran DQ, Rhoads JM, Liu Y. Protective Effect of Lactobacillus Reuteri DSM 17938 Against Experimental Necrotizing Enterocolitis Is Mediated by Toll-Like Receptor 2. Ajp Gastrointestinal and Liver Physiology 2018;315:G231–40. https://doi.org/10.1152/ajpgi.00084.2017.
[17] Spreckels JE, Wejryd E, Marchini G, Jónsson B, Vries DH d., Jenmalm MC, et al. Lactobacillus Reuteri Colonisation of Extremely Preterm Infants in a Randomised Placebo-Controlled Trial. Microorganisms 2021;9:915. https://doi.org/10.3390/microorganisms9050915.
[18] Dommels YE, Kemperman R, Yvonne E. M. P. Zebregs, Draaisma RB, Jol A, Wolvers D, et al. Survival Of Lactobacillus Reuteri DSM 17938 And Lactobacillus Rhamnosus GG in the Human Gastrointestinal Tract With Daily Consumption of a Low-Fat Probiotic Spread. Applied and Environmental Microbiology 2009;75:6198–204. https://doi.org/10.1128/aem.01054-09.
[19] Șufaru I-G, Lazăr L, Șincar D-C, Mârțu M-A, Păsărin L, Luca ED, et al. Clinical Effects of Locally Delivered Lactobacillus Reuteri as Adjunctive Therapy in Patients With Periodontitis: A Split-Mouth Study. Applied Sciences 2022;12:2470. https://doi.org/10.3390/app12052470.
[20] Vaz SR, Tofoli MHC, Avelino MAG, Costa PS. Probiotics for Infantile Colic: Is There Evidence Beyond Doubt? A Meta‐analysis and Systematic Review. Acta Paediatrica 2023;113:170–82. https://doi.org/10.1111/apa.17036.
[21] Xu M, Wang J, Wang N, Sun F, Wang L, Liu X. The Efficacy and Safety of the Probiotic Bacterium Lactobacillus Reuteri DSM 17938 for Infantile Colic: A Meta-Analysis of Randomized Controlled Trials. Plos One 2015;10:e0141445. https://doi.org/10.1371/journal.pone.0141445.
[22] Jadrešin O, Hojsak I, Mišak Z, Kekez AJ, Trbojević T, Ivković L, et al. Lactobacillus Reuteri DSM 17938 in the Treatment of Functional Abdominal Pain in Children. Journal of Pediatric Gastroenterology and Nutrition 2017;64:925–9. https://doi.org/10.1097/mpg.0000000000001478.
[23] Srinivasan RS, Kesavelu D, Veligandla KC, Muni SK, Mehta S. Lactobacillus Reuteri DSM 17938: Review of Evidence in Functional Gastrointestinal Disorders. Pediatrics & Therapeutics 2018;08. https://doi.org/10.4172/2161-0665.1000350.
[24] Janson TM, Ramenzoni LL, Hatz CR, Schlagenhauf U, Attin T, Schmidlin PR. Limosilactobacillus Reuteri Supernatant Attenuates Inflammatory Responses of Human Gingival Fibroblasts to LPS but Not to Elevated Glucose Levels. Journal of Periodontal Research 2024;59:974–81. https://doi.org/10.1111/jre.13290.
[25] Hunter C, Dimaguila MAV, Gál P, Wimmer J, Ransom JL, Carlos RQ, et al. Effect of Routine Probiotic, Lactobacillus Reuteri DSM 17938, Use on Rates of Necrotizing Enterocolitis in Neonates With Birthweight ≪ 1000 Grams: A Sequential Analysis. BMC Pediatrics 2012;12. https://doi.org/10.1186/1471-2431-12-142.
[26] Захарова ИН, Berezhnaya IV, Кучина АЕ, Дедикова ОВ. Probiotic Lactobacillus Reuteri DSM 17938: What Is Known About It Today? Meditsinskiy Sovet = Medical Council 2019:236–42. https://doi.org/10.21518/2079-701x-2019-17-236-242.
[27] Abuqwider J, Porzio AD, Barrella V, Gatto C, Sequino G, Filippis FD, et al. Limosilactobacillus Reuteri DSM 17938 Reverses Gut Metabolic Dysfunction Induced by Western Diet in Adult Rats. Frontiers in Nutrition 2023;10. https://doi.org/10.3389/fnut.2023.1236417.
[28] Ichsan B, Lestari N, Sulistyani. Lactobacillus Reuteri DSM 17938 in Infantile Colic: A Systematic Review and Meta-Analysis. Bioscientia Medicina Journal of Biomedicine and Translational Research 2022;6:1446–54. https://doi.org/10.37275/bsm.v6i3.457.
[29] Brenner LA, Forster JE, Stearns‐Yoder KA, Stamper CE, Hoisington AJ, Brostow DP, et al. Evaluation of an Immunomodulatory Probiotic Intervention for Veterans With Co-Occurring Mild Traumatic Brain Injury and Posttraumatic Stress Disorder: A Pilot Study. Frontiers in Neurology 2020;11. https://doi.org/10.3389/fneur.2020.01015.
[30] Urbańska M, Szajewska H. The Efficacy of Lactobacillus Reuteri DSM 17938 in Infants and Children: A Review of the Current Evidence. European Journal of Pediatrics 2014;173:1327–37. https://doi.org/10.1007/s00431-014-2328-0.
[31] He B, Hoang TK, Tran DQ, Rhoads JM, Liu Y. Adenosine A2A Receptor Deletion Blocks the Beneficial Effects of Lactobacillus Reuteri in Regulatory T-Deficient Scurfy Mice. Frontiers in Immunology 2017;8. https://doi.org/10.3389/fimmu.2017.01680.
[32] Indrio F, Riezzo G, Tafuri S, Ficarella M, Carlucci B, Bisceglia M, et al. Probiotic Supplementation in Preterm: Feeding Intolerance and Hospital Cost. Nutrients 2017;9:965. https://doi.org/10.3390/nu9090965.
[33] Patro-Gołąb B, Szajewska H. Systematic Review With Meta-Analysis: Lactobacillus Reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update. Nutrients 2019;11:2762. https://doi.org/10.3390/nu11112762.
[34] Maragkoudaki M, Chouliaras G, Moutafi AC, Thomas A, Orfanakou A, Papadopoulou A. Efficacy of an Oral Rehydration Solution Enriched With Lactobacillus Reuteri DSM 17938 and Zinc in the Management of Acute Diarrhoea in Infants: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018;10:1189. https://doi.org/10.3390/nu10091189.
[35] Kubota M, Ito K, Tomimoto K, Kanazaki M, Tsukiyama K, Kubota A, et al. Lactobacillus Reuteri DSM 17938 and Magnesium Oxide in Children With Functional Chronic Constipation: A Double-Blind and Randomized Clinical Trial. Nutrients 2020;12:225. https://doi.org/10.3390/nu12010225.
[36] Contreras AG, Vásquez‐Garibay EM, Sánchez‐Ramírez CA, Fafutis‐Morris M, Rizo VD. Lactobacillus Reuteri DSM 17938 and Agave Inulin in Children With Cerebral Palsy and Chronic Constipation: A Double-Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020;12:2971. https://doi.org/10.3390/nu12102971.
[37] Dinleyici EÇ, Dalgıç N, Güven Ş, Akcan ÖM, Yasa O, Kurugöl Z, et al. Lactobacillus Reuteri DSM 17938 Shortens Acute Infectious Diarrhea in a Pediatric Outpatient Setting. Jornal De Pediatria 2015;91:392–6. https://doi.org/10.1016/j.jped.2014.10.009.
[38] Indrio F, Riezzo G, Raimondi F, Bisceglia M, Filannino A, Cavallo L, et al. Lactobacillus Reuteri Accelerates Gastric Emptying and Improves Regurgitation in Infants. European Journal of Clinical Investigation 2010;41:417–22. https://doi.org/10.1111/j.1365-2362.2010.02425.x.
[39] Kaban RK, Wardhana, Hegar B, Rohsiswatmo R, Handryastuti S, Amelia N, et al. Lactobacillus Reuteri DSM 17938 Improves Feeding Intolerance in Preterm Infants. Pediatric Gastroenterology Hepatology & Nutrition 2019;22:545. https://doi.org/10.5223/pghn.2019.22.6.545.
[40] Dryl R, Szajewska H. Probiotics for Management of Infantile Colic: A Systematic Review of Randomized Controlled Trials. Archives of Medical Science 2018;14:1137–43. https://doi.org/10.5114/aoms.2017.66055.
[41] Khmaladze I, Butler EI, Fabre S, Gillbro JM. Lactobacillus Reuteri DSM 17938—A Comparative Study on the Effect of Probiotics and Lysates on Human Skin. Experimental Dermatology 2019;28:822–8. https://doi.org/10.1111/exd.13950.
[42] Wu X. Effectiveness of a Probiotic for Functional Chronic Constipation: A Meta-Analysis of Randomized Controlled Trials. Iranian Journal of Pediatrics 2020;30. https://doi.org/10.5812/ijp.102212.
[43] Saviano A, Brigida M, Migneco A, Gayani G, Zanza C, Candelli M, et al. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus Reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin? Medicina 2021;57:643. https://doi.org/10.3390/medicina57070643.
[44] Pärtty A, Rautava S, Kalliomäki M. Probiotics on Pediatric Functional Gastrointestinal Disorders. Nutrients 2018;10:1836. https://doi.org/10.3390/nu10121836.
[45] Kim H, Cho J-W, Kim D-H, Kang W-J. Effects of Lactobacillus Reuteri Intake on the Periodontal Pathogens. International Journal of Clinical Preventive Dentistry 2024;20:12–8. https://doi.org/10.15236/ijcpd.2024.20.1.12.
[46] Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg M, et al. Metabolic Effects of Lactobacillus ReuteriDSM 17938 in People With Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Obesity and Metabolism 2017;19:579–89. https://doi.org/10.1111/dom.12861.
[47] Jang A, Rod–in W, Monmai C, Sohn M, Kim T, Jeon M-G, et al. Anti-Inflammatory Potential of Lactobacillus Reuteri LM1071 via Eicosanoid Regulation in LPS-stimulated RAW264.7 Cells. Journal of Applied Microbiology 2022;133:67–75. https://doi.org/10.1111/jam.15331.
[48] Hu R, Lin H, Wang M, Zhao Y, Liu H, Min Y, et al. Lactobacillus Reuteri-Derived Extracellular Vesicles Maintain Intestinal Immune Homeostasis Against Lipopolysaccharide-Induced Inflammatory Responses in broilers. Journal of Animal Science and Biotechnology 2021;12. https://doi.org/10.1186/s40104-020-00532-4.
[49] Watthanasakphuban N, Srila P, Pinmanee P, Sompinit K, Rattanaporn K, Peterbauer CK. Development of High Cell Density Limosilactobacillus Reuteri KUB-AC5 for Cell Factory Using Oxidative Stress Reduction Approach. Microbial Cell Factories 2023;22. https://doi.org/10.1186/s12934-023-02076-4.
[50] Rienzi SCD, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus Reuteri Promotes the Expression and Secretion of Enteroendocrine‐ and Enterocyte‐derived Hormones. The Faseb Journal 2025;39. https://doi.org/10.1096/fj.202401669r.
[51] Tang Q, Yi H, Hong W, Wu Q, Yang X, Hu S, et al. Comparative Effects of L. Plantarum CGMCC 1258 and L. Reuteri LR1 on Growth Performance, Antioxidant Function, and Intestinal Immunity in Weaned Pigs. Frontiers in Veterinary Science 2021;8. https://doi.org/10.3389/fvets.2021.728849.
[52] Lundberg L, Mishra PP, Liu P, Forsberg MM, Sverremark‐Ekström E, Grompone G, et al. Bifidobacterium Longum Subsp. longum BG-L47 Boosts Growth and Activity Of Limosilactobacillus Reuteri DSM 17938 and Its Extracellular Membrane Vesicles. Applied and Environmental Microbiology 2024;90. https://doi.org/10.1128/aem.00247-24.
[53] Liu Y, Armbrister SA, Okeugo B, Mills T, Daniel RC, Oh J, et al. Probiotic-Derived Ecto-5’-Nucleotidase Produces Anti-Inflammatory Adenosine Metabolites in Treg-Deficient Scurfy Mice 2023. https://doi.org/10.21203/rs.3.rs-2781715/v1.
[54] Kostandy EN, Suh JH, Tian X, Okeugo B, Rubin E, Shirai S, et al. Probiotic Limosilactobacillus Reuteri DSM 17938 Changes Foxp3 Deficiency-Induced Dyslipidemia and Chronic Hepatitis in Mice. Nutrients 2024;16:511. https://doi.org/10.3390/nu16040511.
[55] Liu Y, He B, Hoang TK, Tran DQ, Rhoads JM. Deletion of Adenosine A2A Receptor Blocks the Beneficial Effects of Lactobacillus Reuteri on Treg-Deficiency-Induced Autoimmunity. The Journal of Immunology 2018;200:176.21-176.21. https://doi.org/10.4049/jimmunol.200.supp.176.21.
[56] Lai Z, Gong F. Protective Effects of Lactobacillus Reuteri on Intestinal Barrier Function in a Mouse Model of Neonatal Necrotizing Enterocolitis. American Journal of Perinatology 2022;41:e386–93. https://doi.org/10.1055/s-0042-1755554.
[57] Dargenio VN, Cristofori F, Dargenio C, Giordano P, Indrio F, Celano G, et al. Use of Limosilactobacillus Reuteri DSM 17938 in Paediatric Gastrointestinal Disorders: An Updated Review. Beneficial Microbes 2022;13:221–42. https://doi.org/10.3920/bm2021.0151.
[58] Liu Y, He B, Hoang TK, Wang T, Taylor CM, Tian X, et al. Therapeutic Effect of Lactobacillus Reuteri DSM 17938 on Treg-Deficiency-Induced Autoimmunity (IPEX Syndrome) via the Inosine-Adenosine 2A Receptors. The Journal of Immunology 2017;198:127.22-127.22. https://doi.org/10.4049/jimmunol.198.supp.127.22.
[59] Bergendiová K, Tibenská E, Majtán J. Pleuran (Β-Glucan From Pleurotus Ostreatus) Supplementation, Cellular Immune Response and Respiratory Tract Infections in Athletes. European Journal of Applied Physiology 2011;111:2033–40. https://doi.org/10.1007/s00421-011-1837-z.
[60] Noorifard M, Ebrahimi E, Moghaddam AD, Asemi Z, Farahani RH, Jazayeri SMM. Effects of Probiotic Supplementation on Immune Response in Soldiers: A Randomized, Double-Blinded, Placebo-Controlled Trial. Annals of Military and Health Sciences Research 2020;18. https://doi.org/10.5812/amh.100540.
[61] Walsh NP. Nutrition and Athlete Immune Health: New Perspectives on an Old Paradigm. Sports Medicine 2019;49:153–68. https://doi.org/10.1007/s40279-019-01160-3.
[62] Buonocore D, Negro M, Arcelli E, Marzatico F. Anti-Inflammatory Dietary Interventions and Supplements to Improve Performance During Athletic Training. Journal of the American College of Nutrition 2015;34:62–7. https://doi.org/10.1080/07315724.2015.1080548.
[63] Kim J. Nutritional Supplement for Athletic Performance: Based on Australian Institute of Sport Sports Supplement Framework. Exercise Science 2019;28:211–20. https://doi.org/10.15857/ksep.2019.28.3.211.
[64] Riezzo G, Orlando A, D’Attoma B, Linsalata M, Martulli M, Russo F. Randomised Double Blind Placebo Controlled Trial on Lactobacillus Reuteri DSM 17938: Improvement in Symptoms and Bowel Habit in Functional Constipation. Beneficial Microbes 2018;9:51–60. https://doi.org/10.3920/bm2017.0049.
[65] Riezzo G, Chimienti G, Orlando A, D’Attoma B, Clemente C, Russo F. Effects of Long-Term Administration of Lactobacillus Reuteri DSM-17938 on Circulating Levels of 5-Ht and BDNF in Adults With Functional Constipation. Beneficial Microbes 2019;10:137–48. https://doi.org/10.3920/bm2018.0050.
[66] Liu Y, Fatheree NY, Mangalat N, Rhoads JM. Lactobacillus Reuteristrains Reduce Incidence and Severity of Experimental Necrotizing Enterocolitis via Modulation of TLR4 and NF-κB Signaling in the Intestine. Ajp Gastrointestinal and Liver Physiology 2012;302:G608–17. https://doi.org/10.1152/ajpgi.00266.2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Julia Charkot, Wojciech Bieńkowski, Irmina Jaszczuk

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 247
Number of citations: 0