The role of artificial intelligence in breast cancer screening as a supportive tool for radiologists
DOI:
https://doi.org/10.12775/QS.2025.43.61336Keywords
breast cancer, artificial intelligence, screening, mammographyAbstract
Introduction
Breast cancer is the most prevalent cancer in Polish women and worldwide. Still remains the second cause of cancer deaths in females. There are several risk factors, both modifiable and non-modifiable. Despite the vast majority is an adenocarcinoma, multiple molecular variants are distinguished with different management and prognosis. Early diagnosis is crucial for cancer-related burden and mortality reduction. For this reason several countries have implemented breast cancer screening programme. This imaging has some limitations associated with interpretative difficulties, huge number of examinations and shortage of staff. Artificial intelligence has been proposed for breast screening, both in assistance to radiologists and independently in the future.
Purpose and methods
The aim of this review is to provide an overview on clinical use of AI in breast cancer screening with focusing on impact on results quality and workload. The evaluation has been focused on the degree of AI participation in diagnostic process and its impact on screening or human performance.
Results
Analysed studies presented various ways of AI application in breast screening. Authors generally focused on cancer detection rate, false positive or negative results, recall rate and the workload involvement. Some improvements, especially in cancer detection rate have been noticed with significant workload reduction. Difficulties, possible errors and people’s opinion were also highlighted.
Conclussion
AI algorithms find their potential application in breast cancer screening, mainly as a supportive tool for radiologists. However, in this moment, standalone AI interpretation does not seem to be accurate and safe enough, especially due to the lack of standarization and not fully convinced population. Future AI systems should take into account all relevant patients’ data for better assessment of the examination. More prospective studies are needed to improve a knowledge about AI possibilities.
References
1. Katsura C, Ogunmwonyi I, Kankam HK, Saha S. Breast cancer: presentation, investigation and management. Br J Hosp Med (Lond). 2022;83(2):1-7. doi:10.12968/hmed.2021.0459
2. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. doi:10.1259/bjr.20211033
3. Mello-Thoms C, Mello CAB. Clinical applications of artificial intelligence in radiology. Br J Radiol. 2023;96(1150):20221031. doi:10.1259/bjr.20221031
4. Gallée L, Kniesel H, Ropinski T, Götz M. Artificial intelligence in radiology - beyond the black box. Künstliche Intelligenz in der Radiologie – jenseits der Black-Box. Rofo. 2023;195(9):797-803. doi:10.1055/a-2076-6736
5. Katzman BD, van der Pol CB, Soyer P, Patlas MN. Artificial intelligence in emergency radiology: A review of applications and possibilities. Diagn Interv Imaging. 2023;104(1):6-10. doi:10.1016/j.diii.2022.07.005
6. Hernström V, Josefsson V, Sartor H, et al. Screening performance and characteristics of breast cancer detected in the Mammography Screening with Artificial Intelligence trial (MASAI): a randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study. Lancet Digit Health. 2025;7(3):e175-e183. doi:10.1016/S2589-7500(24)00267-X
7. Dang LA, Chazard E, Poncelet E, et al. Impact of artificial intelligence in breast cancer screening with mammography. Breast Cancer. 2022;29(6):967-977. doi:10.1007/s12282-022-01375-9
8. Gjesvik J, Moshina N, Lee CI, Miglioretti DL, Hofvind S. Artificial Intelligence Algorithm for Subclinical Breast Cancer Detection. JAMA Netw Open. 2024;7(10):e2437402. Published 2024 Oct 1. doi:10.1001/jamanetworkopen.2024.37402
9. Sechopoulos I, Teuwen J, Mann R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art. Semin Cancer Biol. 2021;72:214-225. doi:10.1016/j.semcancer.2020.06.002
10. Dembrower K, Crippa A, Colón E, Eklund M, Strand F; ScreenTrustCAD Trial Consortium. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study [published correction appears in Lancet Digit Health. 2023 Oct;5(10):e646. doi: 10.1016/S2589-7500(23)00181-4.]. Lancet Digit Health. 2023;5(10):e703-e711. doi:10.1016/S2589-7500(23)00153-X
11. Díaz O, Rodríguez-Ruíz A, Sechopoulos I. Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. Eur J Radiol. 2024;175:111457. doi:10.1016/j.ejrad.2024.111457
12. Soliman A, Li Z, Parwani AV. Artificial intelligence's impact on breast cancer pathology: a literature review. Diagn Pathol. 2024;19(1):38. Published 2024 Feb 22. doi:10.1186/s13000-024-01453-w
13. Gastounioti A, Desai S, Ahluwalia VS, Conant EF, Kontos D. Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res. 2022;24(1):14. Published 2022 Feb 20. doi:10.1186/s13058-022-01509-z
14. Lauritzen AD, Rodríguez-Ruiz A, von Euler-Chelpin MC, et al. An Artificial Intelligence-based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload. Radiology. 2022;304(1):41-49. doi:10.1148/radiol.210948
15. Koch HW, Larsen M, Bartsch H, Kurz KD, Hofvind S. Artificial intelligence in BreastScreen Norway: a retrospective analysis of a cancer-enriched sample including 1254 breast cancer cases. Eur Radiol. 2023;33(5):3735-3743. doi:10.1007/s00330-023-09461-y
16. Elías-Cabot E, Romero-Martín S, Raya-Povedano JL, Brehl AK, Álvarez-Benito M. Impact of real-life use of artificial intelligence as support for human reading in a population-based breast cancer screening program with mammography and tomosynthesis. Eur Radiol. 2024;34(6):3958-3966. doi:10.1007/s00330-023-10426-4
17. Raya-Povedano JL. AI in breast cancer screening: a critical overview of what we know. Eur Radiol. 2024;34(7):4774-4775. doi:10.1007/s00330-023-10530-5
18. Yoon JH, Kim EK. Deep Learning-Based Artificial Intelligence for Mammography. Korean J Radiol. 2021;22(8):1225-1239. doi:10.3348/kjr.2020.1210
19. Branco PESC, Franco AHS, de Oliveira AP, et al. Artificial intelligence in mammography: a systematic review of the external validation. Rev Bras Ginecol Obstet. 2024;46:e-rbgo71. Published 2024 Sep 4. doi:10.61622/rbgo/2024rbgo71
20. Högberg C, Larsson S, Lång K. Anticipating artificial intelligence in mammography screening: views of Swedish breast radiologists. BMJ Health Care Inform. 2023;30(1):e100712. doi:10.1136/bmjhci-2022-100712
21. Ongena YP, Yakar D, Haan M, Kwee TC. Artificial Intelligence in Screening Mammography: A Population Survey of Women's Preferences. J Am Coll Radiol. 2021;18(1 Pt A):79-86. doi:10.1016/j.jacr.2020.09.042
22. Zhang H, Lin F, Zheng T, et al. Artificial intelligence-based classification of breast lesion from contrast enhanced mammography: a multicenter study. Int J Surg. 2024;110(5):2593-2603. Published 2024 May 1. doi:10.1097/JS9.0000000000001076
23. Zeng A, Houssami N, Noguchi N, Nickel B, Marinovich ML. Frequency and characteristics of errors by artificial intelligence (AI) in reading screening mammography: a systematic review. Breast Cancer Res Treat. 2024;207(1):1-13. doi:10.1007/s10549-024-07353-3
24. Larsen M, Aglen CF, Lee CI, et al. Artificial Intelligence Evaluation of 122 969 Mammography Examinations from a Population-based Screening Program. Radiology. 2022;303(3):502-511. doi:10.1148/radiol.212381
25. Friedewald SM, Sieniek M, Jansen S, et al. Triaging mammography with artificial intelligence: an implementation study. Breast Cancer Res Treat. 2025;211(1):1-10. doi:10.1007/s10549-025-07616-7
26. Fisches ZV, Ball M, Mukama T, et al. Strategies for integrating artificial intelligence into mammography screening programmes: a retrospective simulation analysis. Lancet Digit Health. 2024;6(11):e803-e814. doi:10.1016/S2589-7500(24)00173-0
27. Chang YW, Ryu JK, An JK, et al. Artificial intelligence for breast cancer screening in mammography (AI-STREAM): preliminary analysis of a prospective multicenter cohort study. Nat Commun. 2025;16(1):2248. Published 2025 Mar 6. doi:10.1038/s41467-025-57469-3
28. Sabani A, Landsmann A, Hejduk P, et al. BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network. Diagnostics (Basel). 2022;12(7):1564. Published 2022 Jun 28. doi:10.3390/diagnostics12071564
29. Zonderland H, Smithuis R. BI-RADS for mammography and ultrasound 2013. The Radiology Assistant Updated version. 2013
30. Lång K, Hofvind S, Rodríguez-Ruiz A, Andersson I. Can artificial intelligence reduce the interval cancer rate in mammography screening?. Eur Radiol. 2021;31(8):5940-5947. doi:10.1007/s00330-021-07686-3
31. Salim M, Wåhlin E, Dembrower K, et al. External Evaluation of 3 Commercial Artificial Intelligence Algorithms for Independent Assessment of Screening Mammograms. JAMA Oncol. 2020;6(10):1581-1588. doi:10.1001/jamaoncol.2020.3321
32. Çorbacıoğlu ŞK, Aksel G. Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turk J Emerg Med. 2023;23(4):195-198. Published 2023 Oct 3. doi:10.4103/tjem.tjem_182_23
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agata Król, Katarzyna Kwaterska, Karol Kutyłowski, Paweł Łuckiewicz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 10
Number of citations: 0