Flozins - modern treatment for patients with type 2 diabetes
DOI:
https://doi.org/10.12775/QS.2025.43.61318Keywords
type 2 diabetes, flozins, SGLT2 inhibitors, cardiovascular disease, renal diseaseAbstract
Introduction:
Type 2 diabetes is a metabolic disease characterized by elevated blood glucose levels. Uncontrolled disease leads to many complications that significantly affect quality of life and life expectancy. Flozins – sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new group of drugs used in the treatment of DM 2, which, in addition to their hypoglycemic effect in the form of increased glucose excretion in urine, also have a beneficial effect on the cardiovascular system.
Objective:
The aim of the study was to present the benefits of using SGLT2 inhibitors in patients with type 2 diabetes.
Materials and methods:
We reviewed the literature in PubMed using the keywords: “Diabetes type 2”, “Flozins”, “SGLT2 inhibitors”, “Cardiovascular disease”, and “Renal disease”.
Results:
It has been proven that SGLT2 inhibitors, in addition to their hypoglycemic effect, also have a beneficial effect on other systems. The studies discussed show that SGLT2 drugs reduce cardiovascular risk and have a protective effect on the kidneys.
Summary:
The efficacy of SGLT2 inhibitors therapy has been confirmed in clinical trials. Future studies should aim to determine at what stage treatment should be initiated in order to maximize the benefits for the patient.
References
DeFronzo, R., Norton, L., & Abdul-Ghani, M., 2017. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology, 13, pp. 11-26. https://doi.org/10.1038/nrneph.2016.170.
Vallon, V., 2015. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus.. Annual review of medicine, 66, pp. 255-70 . https://doi.org/10.1146/annurev-med-051013-110046.
Nguyen, A., Amigo, Z., McDuffie, K., MacQueen, V., Bell, L., Truong, L., Batchi, G., & McMillin, S., 2024. Effects of Empagliflozin‐Induced Glycosuria on Weight Gain, Food Intake and Metabolic Indicators in Mice Fed a High‐Fat Diet. Endocrinology, Diabetes & Metabolism, 7. https://doi.org/10.1002/edm2.475.
DeFronzo, R., Hompesch, M., Kasichayanula, S., Liu, X., Hong, Y., Pfister, M., Morrow, L., Leslie, B., Boulton, D., Ching, A., LaCreta, F., & Griffen, S., 2013. Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects With Type 2 Diabetes. Diabetes Care, 36, pp. 3169 - 3176. https://doi.org/10.2337/dc13-0387.
Merovci A, Mari A, Solis-Herrera C, et al. Dapagliflozin lowers plasma glucose concentration and improves β-cell function. J Clin Endocrinol Metab. 2015;100(5):1927-32.
Forst T, Alghdban MK, Fischer A, et al. Sequential Treatment Escalation with Dapagliflozin and Saxagliptin Improves Beta Cell Function in Type 2 Diabetic Patients on Previous Metformin Treatment: An Exploratory Mechanistic Study. Horm Metab Res. 2018;50(5):403-7.
Saucedo-Orozco, H., Voorrips, S., Yurista, S., De Boer, R., & Westenbrink, B., 2022. SGLT2 Inhibitors and Ketone Metabolism in Heart Failure. Journal of Lipid and Atherosclerosis, 11, pp. 1 - 19. https://doi.org/10.12997/jla.2022.11.1.1.
Ekanayake, P., & Mudaliar, S., 2021. A novel hypothesis linking low‐grade ketonaemia to cardio‐renal benefits with sodium‐glucose cotransporter‐2 inhibitors. Diabetes, 24, pp. 11 - 3. https://doi.org/10.1111/dom.14562.
Arefhosseini, S., Roshanravan, N., Tutunchi, H., Rostami, S., Khoshbaten, M., & Ebrahimi-Mameghani, M., 2023. Myo-inositol supplementation improves cardiometabolic factors, anthropometric measures, and liver function in obese patients with non-alcoholic fatty liver disease. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1092544.
Tanaka, H., Takano, K., Iijima, H., Kubo, H., Maruyama, N., Hashimoto, T., Arakawa, K., Togo, M., Inagaki, N., & Kaku, K., 2016. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus. Advances in Therapy, 34, pp. 436 - 451. https://doi.org/10.1007/s12325-016-0457-8.
Heerspink, H., Provenzano, M., Vart, P., Jongs, N., Correa-Rotter, R., Rossing, P., Mark, P., Pecoits-Filho, R., McMurray, J., Langkilde, A., Wheeler, D., Toto, R., & Chertow, G., 2024. Dapagliflozin and Blood Pressure in Patients with Chronic Kidney Disease and Albuminuria.. American heart journal. https://doi.org/10.1016/j.ahj.2024.02.006.
Mylonas, N., Nikolaou, P., Karakasis, P., Stachteas, P., Fragakis, N., & Andreadou, I., 2024. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. International Journal of Molecular Sciences, 25. https://doi.org/10.3390/ijms25137274.
Chen, X., Delić, D., Cao, Y., Shen, L., Shao, Q., Zhang, Z., Wu, H., Hasan, A., Reichetzeder, C., Gaballa, M., Krämer, B., Klein, T., Yin, L., He, B., Morgera, S., & Hocher, B., 2023. Renoprotective effects of empagliflozin are linked to activation of the tubuloglomerular feedback mechanism and blunting of the complement system. American Journal of Physiology - Cell Physiology, 324, pp. C951 - C962. https://doi.org/10.1152/ajpcell.00528.2022.
Abdollahi, E., Keyhanfar, F., Delbandi, A., Falak, R., Hajimiresmaiel, S., & Shafiei, M., 2022. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages.. European journal of pharmacology, pp. 174715 . https://doi.org/10.1016/j.ejphar.2021.174715.
Fitchett, D., Zinman, B., Wanner, C., Lachin, J., Hantel, S., Salsali, A., Johansen, O., Woerle, H., Broedl, U., & Inzucchi, S., 2016. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. European Heart Journal, 37, pp. 1526 - 1534. https://doi.org/10.1093/eurheartj/ehv728.
McGuire, D., Zinman, B., Inzucchi, S., Wanner, C., Fitchett, D., Anker, S., Pocock, S., Kaspers, S., George, J., Von Eynatten, M., Johansen, O., Jamal, W., Mattheus, M., Elsasser, U., Hantel, S., & Lund, S., 2020. Effects of empagliflozin on first and recurrent clinical events in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a secondary analysis of the EMPA-REG OUTCOME trial.. The lancet. Diabetes & endocrinology, 8 12, pp. 949-959 . https://doi.org/10.1016/S2213-8587(20)30344-2.
Perkovic, V., De Zeeuw, D., Mahaffey, K., Fulcher, G., Erondu, N., Shaw, W., Barrett, T., Weidner-Wells, M., Deng, H., Matthews, D., & Neal, B., 2018. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials.. The lancet. Diabetes & endocrinology, 6 9, pp. 691-704 . https://doi.org/10.1016/S2213-8587(18)30141-4.
Mosenzon, O., Wiviott, S., Cahn, A., Rozenberg, A., Yanuv, I., Goodrich, E., Murphy, S., Heerspink, H., Zelniker, T., Dwyer, J., Bhatt, D., Leiter, L., McGuire, D., Wilding, J., Kato, E., Gause-Nilsson, I., Fredriksson, M., Johansson, P., Langkilde, A., Sabatine, M., & Raz, I., 2019. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial.. The lancet. Diabetes & endocrinology. https://doi.org/10.1016/S2213-8587(19)30180-9.
Oyama, K., Raz, I., Cahn, A., Kuder, J., Murphy, S., Bhatt, D., Leiter, L., McGuire, D., Wilding, J., Park, K., Goudev, A., Diaz, R., Špinar, J., Gause-Nilsson, I., Mosenzon, O., Sabatine, M., & Wiviott, S., 2021. Obesity and effects of dapagliflozin on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus in the DECLARE-TIMI 58 trial.. European heart journal. https://doi.org/10.1093/eurheartj/ehab530.
Bhanushali, K., Asnani, H., Nair, A., Ganatra, S., & Dani, S., 2024. Pharmacovigilance study for SGLT 2 inhibitors- Safety review of real-world data & randomized clinical trials.. Current problems in cardiology, pp. 102664 . https://doi.org/10.1016/j.cpcardiol.2024.102664.
Halimi, S., & Vergès, B., 2014. Adverse effects and safety of SGLT-2 inhibitors.. Diabetes & metabolism, 40 6 Suppl 1, pp. S28-34 https://doi.org/10.1016/S1262-3636(14)72693-X.
Yale, J., Xie, J., Sherman, S., & Garceau, C., 2017. Canagliflozin in Conjunction With Sulfonylurea Maintains Glycemic Control and Weight Loss Over 52 Weeks: A Randomized, Controlled Trial in Patients With Type 2 Diabetes Mellitus.. Clinical therapeutics, 39 11, pp. 2230-2242.e2 . https://doi.org/10.1016/j.clinthera.2017.10.003.
Petrykiv, S., Sjöström, C., Greasley, P., Xu, J., Persson, F., & Heerspink, H., 2017. Differential Effects of Dapagliflozin on Cardiovascular Risk Factors at Varying Degrees of Renal Function.. Clinical journal of the American Society of Nephrology : CJASN, 12 5, pp. 751-759 . https://doi.org/10.2215/CJN.10180916.
Bersoff-Matcha, S., Chamberlain, C., Cao, C., Kortepeter, C., & Chong, W., 2019. Fournier Gangrene Associated With Sodium-Glucose Cotransporter-2 Inhibitors: A Review of Spontaneous Postmarketing Cases.. Annals of internal medicine. https://doi.org/10.7326/M19-0085.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dominik Augustyn, Krzysztof Pawlikowski, Michał Korpalski, Marek Żygłowicz, Mateusz Marciniak, Adam Torbicki, Piotr Gaworek, Maria Pawluczyk, Alicja Trybuła

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 6
Number of citations: 0