Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The impact of maximal oxygen uptake (VO₂max) on athletic performance and health - a review
  • Home
  • /
  • The impact of maximal oxygen uptake (VO₂max) on athletic performance and health - a review
  1. Home /
  2. Archives /
  3. Vol. 43 (2025) /
  4. Health Sciences

The impact of maximal oxygen uptake (VO₂max) on athletic performance and health - a review

Authors

  • Julia Charkot Medical University of Warsaw https://orcid.org/0009-0000-1224-3251
  • Wojciech Bieńkowski Szpital Grochowski im. dr med. Rafała Masztaka https://orcid.org/0009-0005-1776-8862
  • Bartłomiej Kusy Warszawski Uniwersytet Medyczny https://orcid.org/0009-0000-8355-2262
  • Michał Bieńkowski Uniwersytet Jagielloński w Krakowie https://orcid.org/0009-0008-8516-0201
  • Mikołaj Charkot Medical University of Warsaw https://orcid.org/0009-0002-1921-9646
  • Piotr Kucharczyk Medical University of Warsaw https://orcid.org/0009-0005-7382-9690
  • Irmina Jaszczuk Medical University of Warsaw https://orcid.org/0009-0001-7504-832X
  • Patrycja Retman Medical University of Warsaw https://orcid.org/0009-0009-6825-5601

DOI:

https://doi.org/10.12775/QS.2025.43.61293

Keywords

VO₂max, aerobic capacity, cardiorespiratory fitness, exercise physiology, health promotion, endurance training, wearable technology, physical education, public health

Abstract

Introduction and purpose: Maximal oxygen uptake (VO₂max) is a key indicator of aerobic capacity, widely used in sports science and clinical diagnostics. It reflects the functional efficiency of the cardiovascular, respiratory, and muscular systems. Given its relevance to physical performance and health risk prediction, VO₂max has become a central focus in exercise physiology and preventive medicine. The aim of this study is to review current literature on the physiological determinants, assessment methods, modifiability, and clinical implications of VO₂max.

Material and method: A narrative review of literature published between 2000 and 2024 was performed using databases such as PubMed, Scopus, and Web of Science. Search terms included: “VO₂max,” “cardiorespiratory fitness,” “aerobic capacity,” “exercise testing,” and “training.” Eligible studies involved human participants and addressed either physiological mechanisms, measurement techniques, interventions, or the role of VO₂max in disease risk. Non-peer-reviewed and animal studies were excluded.

Results: VO₂max is influenced by genetic, physiological, and environmental factors, and can be improved through structured endurance and high-intensity interval training. Direct and indirect assessment methods, including laboratory testing and wearable devices, offer various levels of accuracy and accessibility. VO₂max is also strongly associated with cardiovascular and all-cause mortality risk, especially in clinical and aging populations.

Conclusions: VO₂max is a robust, clinically relevant marker of fitness and health. Its integration into regular health monitoring and personalized training programs offers valuable potential for disease prevention, performance optimization, and public health promotion.

References

[1] Tarnus E, Catan A, Verkindt C, Bourdon E. Evaluation of Maximal O2 Uptake With Undergraduate Students at the University of La Reunion. Ajp Advances in Physiology Education 2011;35:76–81. https://doi.org/10.1152/advan.00042.2010.

[2] Ledergerber R, Jacobs MW, Roth R, Schumann M. Contribution of Different Strength Determinants on Distinct Phases of Olympic Rowing Performance in Adolescent Athletes. European Journal of Sport Science 2023;23:2311–20. https://doi.org/10.1080/17461391.2023.2230937.

[3] Lundby C, Montero D, Joyner MJ. Biology of VO2max: Looking Under the Physiology Lamp. Acta Physiologica 2016;220:218–28. https://doi.org/10.1111/apha.12827.

[4] Prada VG d., Ortega JF, Ramírez-Jiménez M, Morales-Palomo F, Pallarés JG, Mora‐Rodríguez R. Training Intensity Relative to Ventilatory Thresholds Determines Cardiorespiratory Fitness Improvements in Sedentary Adults With Obesity. European Journal of Sport Science 2018;19:549–56. https://doi.org/10.1080/17461391.2018.1540659.

[5] Evans H, Parfitt G, Eston R. The Perceptually Regulated Exercise Test Is Sensitive to Increases in Maximal Oxygen Uptake. European Journal of Applied Physiology 2012;113:1233–9. https://doi.org/10.1007/s00421-012-2541-3.

[6] Cláudio Gil Soares de Araújo, Claudia Lúcia Barros de Castro, Franca JF, Christina Grüne de Souza e Silva. CLINIMEX Aerobic Fitness Questionnaire: Proposal and Validation. International Journal of Cardiovascular Sciences 2019. https://doi.org/10.5935/2359-4802.20190064.

[7] Crull D, Mekenkamp I, Mikhal J, Ruinemans GM, Det MJ v., Kouwenhoven EA. The Steep Ramp Test as Precursor to Assess Physical Fitness Before Esophagectomy in Cancer Patients. Digestive Surgery 2025;42:59–67. https://doi.org/10.1159/000543029.

[8] Wisniewski KS. Exercise Intensity: Do Individuals Perceive It as We Physiologically Define It? Medicine & Science in Sports & Exercise 2019;51:394–394. https://doi.org/10.1249/01.mss.0000561683.99366.7d.

[9] Christensen PM, Petersen N, Friis SN, Weitzberg E, Nybo L. Effects of Nitrate Supplementation in Trained and Untrained Muscle Are Modest With Initial High Plasma Nitrite Levels. Scandinavian Journal of Medicine and Science in Sports 2017;27:1616–26. https://doi.org/10.1111/sms.12848.

[10] Ito T, Takamata A, Yaegashi K, Itoh T, Yoshida T, Kawabata T, et al. Role of Blood Volume in the Age-Associated Decline in Peak Oxygen Uptake in Humans. The Japanese Journal of Physiology 2001;51:607–12. https://doi.org/10.2170/jjphysiol.51.607.

[11] Zhou N, Scoubeau C, Forton K, Loi P, Closset J, Deboeck G, et al. Lean Mass Loss and Altered Muscular Aerobic Capacity After Bariatric Surgery. Obesity Facts 2022;15:248–56. https://doi.org/10.1159/000521242.

[12] Kang S-J, Ko K-J. Association Between Resting Heart Rate, VO2max and Carotid Intima-Media Thickness in Middle-Aged Men. Ijc Heart & Vasculature 2019;23:100347. https://doi.org/10.1016/j.ijcha.2019.100347.

[13] Cress ML, Forrester K, Probst L, Foster C, Doberstein S, Porcari JP. Effect of Wearing the Elevation Training Mask on Aerobic Capacity, Lung Function, and Hematological Variables. Medicine & Science in Sports & Exercise 2016;48:1040–1. https://doi.org/10.1249/01.mss.0000488131.38685.16.

[14] Nytrøen K, Rustad LA, Aukrust P, Ueland T, Hallén J, Holm I, et al. High-Intensity Interval Training Improves Peak Oxygen Uptake and Muscular Exercise Capacity in Heart Transplant Recipients. American Journal of Transplantation 2012;12:3134–42. https://doi.org/10.1111/j.1600-6143.2012.04221.x.

[15] Assis MG, Barbosa JG, Seffrin A, Vinícius Ribeiro dos Anjos Souza, Vivan L, Rodrigues MM, et al. Maximal Oxygen Uptake, Muscular Oxidative Capacity, and Ventilatory Threshold in Amateur Triathletes: Eight-Month Training Follow-Up. Open Access Journal of Sports Medicine 2024;Volume 15:9–17. https://doi.org/10.2147/oajsm.s453875.

[16] Asoom LIA, Almakhaita MM. Prediction of the Maximum Oxygen Consumption (VO2max) for Young Saudi Females Using Exercise Parameters. Journal of Family and Community Medicine 2024;31:289–94. https://doi.org/10.4103/jfcm.jfcm_58_24.

[17] Antunes‐Correa LM. Maximal Oxygen Uptake: New and More Accurate Predictive Equation. European Journal of Preventive Cardiology 2018;25:1075–6. https://doi.org/10.1177/2047487318780442.

[18] Donovan T, Bain AL, Tu W, Pyne DB, Rao S. Influence of Exercise on Exhausted and Senescent T Cells: A Systematic Review. Frontiers in Physiology 2021;12. https://doi.org/10.3389/fphys.2021.668327.

[19] LaRocca TJ, Seals DR, Pierce GL. Leukocyte Telomere Length Is Preserved With Aging in Endurance Exercise-Trained Adults and Related to Maximal Aerobic Capacity. Mechanisms of Ageing and Development 2010;131:165–7. https://doi.org/10.1016/j.mad.2009.12.009.

[20] Mazaheri R, Schmied C, Niederseer D, Guazzi M. Cardiopulmonary Exercise Test Parameters in Athletic Population: A Review. Journal of Clinical Medicine 2021;10:5073. https://doi.org/10.3390/jcm10215073.

[21] Williams CJ, Williams M, Eynon N, Ashton KJ, Little JP, Wisløff U, et al. Genes to Predict VO2max Trainability: A Systematic Review. BMC Genomics 2017;18. https://doi.org/10.1186/s12864-017-4192-6.

[22] Haddad E, Wells GA, Sigal RJ, Boul� NG, Kenny GP. Meta-Analysis of the Effect of Structured Exercise Training on Cardiorespiratory Fitness in Type 2 Diabetes Mellitus. Diabetologia 2003;46:1071–81. https://doi.org/10.1007/s00125-003-1160-2.

[23] Meléndez-Ortega A, Davis CL, Barbeau P, Boyle CA. Oxygen Uptake of Overweight and Obese Children at Different Stages of a Progressive Treadmill Test. (Consumo De Oxígeno De Niños Y Niñas Con Sobrepeso Y Obesos en Los Diferentes Estadios De Una Prueba Progresiva en Un Tapiz Rodante). Ricyde Revista Internacional De Ciencias Del Deporte 2010;6:74–90. https://doi.org/10.5232/ricyde2010.01805.

[24] Kim C, Wheatley CM, Behnia M, Johnson BD. The Effect of Aging on Relationships Between Lean Body Mass and VO2max in Rowers. Plos One 2016;11:e0160275. https://doi.org/10.1371/journal.pone.0160275.

[25] Sagiv M, Goldhammer E, Ben‐Sira D, Amir R. Factors Defining Oxygen Uptake at Peak Exercise in Aged People. European Review of Aging and Physical Activity 2010;7:1–2. https://doi.org/10.1007/s11556-010-0061-x.

[26] khazraee touraj, Fararouei M, Daneshmandi H, Mobasheri F, Zamanian Z. Maximal Oxygen Consumption, Respiratory Volume and Some Related Factors in Fire-Fighting Personnel. International Journal of Preventive Medicine 2017;8:25. https://doi.org/10.4103/ijpvm.ijpvm_299_16.

[27] Araújo AL d., Silva LCR, Fernandes JR, Manuella de Sousa Toledo Matias, Boas LSV, Machado CM, et al. Elderly Men With Moderate and Intense Training Lifestyle Present Sustained Higher Antibody Responses to Influenza Vaccine. Age 2015;37. https://doi.org/10.1007/s11357-015-9843-4.

[28] Ribeiro RR, Santos KD, Wellington Roberto Gomes de Carvalho, Gonçalves EM, Roman EP, Minatto G. Aptidão Aeróbia, Indicadores Sociodemográficos E Biológicos Em Escolares Do Sexo Feminino. Brazilian Journal of Kinanthropometry and Human Performance 2013;15. https://doi.org/10.5007/1980-0037.2013v15n4p448.

[29] Poole G, Harris C, Greenough A. Exercise Capacity in Very Low Birth Weight Adults: A Systematic Review and Meta-Analysis. Children 2023;10:1427. https://doi.org/10.3390/children10081427.

[30] Harkel AD t., Takken T, Osch-Gevers M v., Helbing WA. Normal Values for Cardiopulmonary Exercise Testing in Children. European Journal of Cardiovascular Prevention & Rehabilitation 2010;18:48–54. https://doi.org/10.1097/hjr.0b013e32833cca4d.

[31] Sanada K, Iemitsu M, Murakami H, Gando Y, Kawano H, Kawakami R, et al. Adverse Effects of Coexistence of Sarcopenia and Metabolic Syndrome in Japanese Women. European Journal of Clinical Nutrition 2012;66:1093–8. https://doi.org/10.1038/ejcn.2012.43.

[32] Vicente MM, Herrero DC, Prieto JP. Cardiorespiratory Fitness in Spanish Firefighters. Journal of Occupational and Environmental Medicine 2021;63:e318–22. https://doi.org/10.1097/jom.0000000000002199.

[33] Matsuo T, So R, Takahashi M. Workers’ Physical Activity Data Contribute to Estimating Maximal Oxygen Consumption: A Questionnaire Study to Concurrently Assess Workers’ Sedentary Behavior and Cardiorespiratory Fitness. BMC Public Health 2020;20. https://doi.org/10.1186/s12889-019-8067-4.

[34] Vecchiato M, Duregon F, Borasio N, Faggian S, Bassanello V, Aghi A, et al. Cardiopulmonary Exercise Response at High Altitude in Patients With Congenital Heart Disease: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine 2024;11. https://doi.org/10.3389/fcvm.2024.1454680.

[35] Gaston A-F, Durand F, Roca E, Doucende G, Hapková I, Subirats E. Exercise-Induced Hypoxaemia Developed at Sea-Level Influences Responses to Exercise at Moderate Altitude. Plos One 2016;11:e0161819. https://doi.org/10.1371/journal.pone.0161819.

[36] Weatherwax R, Richardson TD, Beltz NM, Nolan PB, Dalleck LC. Verification Testing to Confirm VO2max in Altitude-Residing, Endurance-Trained Runners. International Journal of Sports Medicine 2016;37:525–30. https://doi.org/10.1055/s-0035-1569346.

[37] Chapman RF, Karlsen T, Ge RL, Stray‐Gundersen J, Levine BD. Living Altitude Influences Endurance Exercise Performance Change Over Time at Altitude. Journal of Applied Physiology 2016;120:1151–8. https://doi.org/10.1152/japplphysiol.00909.2015.

[38] Zhao C, Zhang C, Lin J, Wang S, Liu H, Wu H, et al. Variations of Urban NO2 Pollution During the COVID-19 Outbreak and Post-Epidemic Era in China: A Synthesis of Remote Sensing and in Situ Measurements. Remote Sensing 2022;14:419. https://doi.org/10.3390/rs14020419.

[39] Bradwell AR, Ashdown K, Rue CA, Delamere J, Thomas OR, Lucas SJE, et al. Acetazolamide Reduces Exercise Capacity Following a 5-Day Ascent to 4559 M in a Randomised Study. BMJ Open Sport & Exercise Medicine 2018;4:e000302. https://doi.org/10.1136/bmjsem-2017-000302.

[40] Herdy AH, Souza P d. Comparative Analysis of Direct and Indirect Methods for the Determination Of Maximal Oxygen Uptake in Sedentary Young Adults. International Journal of Cardiovascular Sciences 2019. https://doi.org/10.5935/2359-4802.20190052.

[41] Rexhepi AM, Brestovci B. Estimation of VO2max According to the 3’bike Test. Human Movement 2018;13:367–71. https://doi.org/10.2478/v10038-012-0044-z.

[42] Eliane Cristina de Andrade Gonçalves, Nardo N, Souza M, Silva DAS. Which Anthropometric Equation to Predict Body Fat Percentage Is More Strongly Associated With Maximum Oxygen Uptake in Adolescents? A Cross-Sectional Study. Sao Paulo Medical Journal 2023;141. https://doi.org/10.1590/1516-3180.2022.0437.r1.07022023.

[43] Grant C, Dina C. Janse van Rensburg, Pepper MS, Toit P d., Wood P, Ker J, et al. The Correlation Between the Health-Related Fitness of Healthy Participants Measured at Home as Opposed to Fitness Measured by Sport Scientists in a Laboratory. South African Family Practice 2014;56:235–9. https://doi.org/10.1080/20786190.2014.953888.

[44] Robben KE, Poole DC, Harms CA. Maximal Oxygen Uptake Validation in Children With Expiratory Flow Limitation. Pediatric Exercise Science 2013;25:84–100. https://doi.org/10.1123/pes.25.1.84.

[45] Wilson DR, Mattlage AE, Seier NM, Todd JD, Price BG, Kwapiszeski SJ, et al. Recumbent Stepper Submaximal Test Response Is Reliable in Adults With and Without Stroke. Plos One 2017;12:e0172294. https://doi.org/10.1371/journal.pone.0172294.

[46] Speelman AD, Groothuis JT, Nimwegen M v., Ellis S. van der Scheer, Borm GF, Bloem BR, et al. Cardiovascular Responses During a Submaximal Exercise Test in Patients With Parkinson’s Disease. Journal of Parkinson S Disease 2012;2:241–7. https://doi.org/10.3233/jpd-2012-012111.

[47] Oliveira NA d., Silveira H, Carvalho A, Christiane Gouvêa e Silva Hellmuth, Santos TM, Martins JV, et al. Assessment of Cardiorespiratory Fitness Using Submaximal Protocol in Older Adults With Mood Disorder and Parkinson’s Disease. Archives of Clinical Psychiatry (São Paulo) 2013;40:88–92. https://doi.org/10.1590/s0101-60832013000300002.

[48] Schultz SA, Byers J, Benzinger TL, Reeds DN, Vlassenko AG, Cade WT, et al. Comparison of the Ekblom-Bak Submaximal Test to a Maximal Test in a Cohort of Healthy Younger and Older Adults in the United States. Frontiers in Physiology 2020;11. https://doi.org/10.3389/fphys.2020.550285.

[49] Väisänen D, Ekblom Ö, Ekblom‐Bak E, Andersson E, Nilsson J, Ekblom M. Criterion Validity of the Ekblom-Bak and the Åstrand Submaximal Test in an Elderly Population. European Journal of Applied Physiology 2019;120:307–16. https://doi.org/10.1007/s00421-019-04275-7.

[50] Abdillah M, Prabowo T, Prananta MS. Comparison of VO2 Max Prediction Value, Physiological Response, and Borg Scale Between 12-Minute and 3200-Meter Run Fitness Tests Among Indonesian Army Soldiers. International Journal of Integrated Health Sciences 2016;4:80–5. https://doi.org/10.15850/ijihs.v4n2.836.

[51] Rayas RV, Shetye JV, Mehta A. Agreement Between Estimated VO2 Max by 6-Minute Walk Test and Non-Exercise Equation in Physiotherapy Students. Journal of Exercise Science and Physiotherapy 2019;15. https://doi.org/10.18376/jesp/2019/v15/i1/111319.

[52] Risum K, Edvardsen E, Selvaag AM, Dagfinrud H, Sanner H. Measurement Properties and Performance of an Eight-Minute Submaximal Treadmill Test in Patients With Juvenile Idiopathic Arthritis: A Controlled Study. Pediatric Rheumatology 2019;17. https://doi.org/10.1186/s12969-019-0316-7.

[53] Bayshtok G, Tiosano S, Furer A. Use of Wearable Devices for Peak Oxygen Consumption Measurement in Clinical Cardiology: Case Report and Literature Review. Interactive Journal of Medical Research 2023;12:e45504. https://doi.org/10.2196/45504.

[54] Sun W, Guo Z, Yang Z, Wu Y, Lan W, Liao Y, et al. A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible Wearable Sensors. Sensors 2022;22:7784. https://doi.org/10.3390/s22207784.

[55] Alzahrani A, Ullah A. Advanced Biomechanical Analytics: Wearable Technologies for Precision Health Monitoring in Sports Performance. Digital Health 2024;10. https://doi.org/10.1177/20552076241256745.

[56] Seçkin AÇ, Ateş B, Seçkin M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Applied Sciences 2023;13:10399. https://doi.org/10.3390/app131810399.

[57] Argent R, Hetherington‐Rauth M, Stang J, Tarp J, Ortega FB, Molina‐García P, et al. Recommendations for Determining the Validity of Consumer Wearables and Smartphones for the Estimation of Energy Expenditure: Expert Statement and Checklist of the INTERLIVE Network. Sports Medicine 2022;52:1817–32. https://doi.org/10.1007/s40279-022-01665-4.

[58] Johnston W, Júdice PB, Molina‐García P, Mühlen JM, Skovgaard EL, Stang J, et al. Recommendations for Determining the Validity of Consumer Wearable and Smartphone Step Count: Expert Statement and Checklist of the INTERLIVE Network. British Journal of Sports Medicine 2020;55:780–93. https://doi.org/10.1136/bjsports-2020-103147.

[59] Alkandari JR, Nieto MB. Peak O<sub>2</Sub> Uptake Correlates With Fat Free Mass in Athletes but Not in Sedentary Subjects. Health 2019;11:40–9. https://doi.org/10.4236/health.2019.111005.

[60] Villanueva IR, Campbell JC, Medina SM, Jorgensen TM, Wilson S, Angadi SS, et al. Comparison of Constant Load Exercise Intensity for Verification of Maximal Oxygen Uptake Following a Graded Exercise Test in Older Adults. Physiological Reports 2021;9. https://doi.org/10.14814/phy2.15037.

[61] Lind L, Michaëlsson K. Detailed Investigation of Multiple Resting Cardiovascular Parameters in Relation to Physical Fitness. Clinical Physiology and Functional Imaging 2022;43:120–7. https://doi.org/10.1111/cpf.12800.

[62] Wibowo BRA, Widiatmaja DM, Sakina S, Abdurachman, Rejeki PS. Comparison of High-Intensity Interval Training and Moderate-Intensity Continuous Training on VO2max and Response Reaction Time in Basketball Referees. Indian Journal of Forensic Medicine & Toxicology 2021;15:2700–8. https://doi.org/10.37506/ijfmt.v15i3.15715.

[63] Cabre HE, Gordon AN, Patterson ND, Smith‐Ryan AE. Evaluation of Pre-Workout and Recovery Formulations on Body Composition and Performance After a 6-Week High-Intensity Training Program. Frontiers in Nutrition 2022;9. https://doi.org/10.3389/fnut.2022.1016310.

[64] Amaro‐Gahete FJ, De‐la‐O A, Jurado‐Fasoli L, Dote‐Montero M, Gutiérrez Á, Ruiz JR, et al. Changes in Physical Fitness After 12 Weeks of Structured Concurrent Exercise Training, High Intensity Interval Training, or Whole-Body Electromyostimulation Training in Sedentary Middle-Aged Adults: A Randomized Controlled Trial. Frontiers in Physiology 2019;10. https://doi.org/10.3389/fphys.2019.00451.

[65] Burich R, Teljigović S, Boyle E, Sjøgaard G. Aerobic Training Alone or Combined With Strength Training Affects Fitness in Elderly: Randomized Trial. European Journal of Sport Science 2015;15:773–83. https://doi.org/10.1080/17461391.2015.1060262.

[66] Fentaw S, Tadesse T, Birhanu Z. Methodological and Aerobic Capacity Adaptations of High‐intensity Interval Training at Different Altitudes in Distance Runners: A Comprehensive Meta‐analysis. Physiological Reports 2025;13. https://doi.org/10.14814/phy2.70349.

[67] Lo Y-P, Chiang S, Lin C, Liu H, Chiang L. Effects of Individualized Aerobic Exercise Training on Physical Activity and Health-Related Physical Fitness Among Middle-Aged and Older Adults With Multimorbidity: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health 2020;18:101. https://doi.org/10.3390/ijerph18010101.

[68] Namboonlue C, Namboonlue S, Sriwiset P, Jaisuk J, Buttichak A, Muangritdech N, et al. Effects of Concurrent Resistance and Aerobic Training on Body Composition, Muscular Strength and Maximum Oxygen Uptake in Men With Excess Weight. Teorìâ Ta Metodika Fìzičnogo Vihovannâ 2023;23:389–96. https://doi.org/10.17309/tmfv.2023.3.11.

[69] Pito PG, Cardoso JR, Tufano JJ, Guariglia DA. Effects of Concurrent Training on 1RM and VO2 in Adults: Systematic Review With Meta-Analysis. International Journal of Sports Medicine 2021;43:297–304. https://doi.org/10.1055/a-1506-3007.

[70] Brandão C, Rodrigues GS, Noronha NY, Nicoletti CF, Junqueira-Franco MV, Alves CP, et al. 8-Week Combined Exercise Protocol Promote Health and Cardiovascular Benefits in Obese Women by Epigenetic Modifications: A Prospective Study 2024. https://doi.org/10.21203/rs.3.rs-4119029/v1.

[71] Russomando L, Bono V, Mancini A, Terracciano A, Cozzolino F, Imperlini E, et al. The Effects of Short-Term High-Intensity Interval Training and Moderate Intensity Continuous Training on Body Fat Percentage, Abdominal Circumference, BMI and VO2max in Overweight Subjects. Journal of Functional Morphology and Kinesiology 2020;5:41. https://doi.org/10.3390/jfmk5020041.

[72] Taylor JL, Holland DJ, Keating SE, Leveritt M, Gomersall SR, Rowlands AV, et al. Short-Term and Long-Term Feasibility, Safety, and Efficacy of High-Intensity Interval Training in Cardiac Rehabilitation. Jama Cardiology 2020;5:1382. https://doi.org/10.1001/jamacardio.2020.3511.

[73] Boff W, Silva AM d., Farinha JB, Rodrigues‐Krause J, Reischak-Oliveira Á, Tschiedel B, et al. Superior Effects of High-Intensity Interval vs. Moderate-Intensity Continuous Training on Endothelial Function and Cardiorespiratory Fitness in Patients With Type 1 Diabetes: A Randomized Controlled Trial. Frontiers in Physiology 2019;10. https://doi.org/10.3389/fphys.2019.00450.

[74] Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA. Effects of High-Intensity Interval Training and Moderate-Intensity Continuous Training on Endothelial Function and Cardiometabolic Risk Markers in Obese Adults. Journal of Applied Physiology 2016;121:279–88. https://doi.org/10.1152/japplphysiol.00024.2016.

[75] Paulauskas R, Nekriošius R, Dadelienė R, Sousa A, Figueira B. Muscle Oxygenation Measured With Near-Infrared Spectroscopy Following Different Intermittent Training Protocols in a World-Class Kayaker—A Case Study. Sensors 2022;22:8238. https://doi.org/10.3390/s22218238.

[76] Cusack H, Hewlings S. The Impact of Iron Supplementation on Athletic Performance in Elite-Level Female Athletes–A Systematic Review. Strength and Conditioning 2022;45:342–53. https://doi.org/10.1519/ssc.0000000000000742.

[77] Pasricha S, Löw M, Thompson J, Farrell A, De-Regil L-M. Iron Supplementation Benefits Physical Performance in Women of Reproductive Age: A Systematic Review and Meta-Analysis. Journal of Nutrition 2014;144:906–14. https://doi.org/10.3945/jn.113.189589.

[78] Semenova EA, Miyamoto‐Mikami E, Акимов ЕБ, Al‐Khelaifi F, Murakami H, Zempo H, et al. The Association of HFE Gene H63D Polymorphism With Endurance Athlete Status and Aerobic Capacity: Novel Findings and a Meta-Analysis. European Journal of Applied Physiology 2020;120:665–73. https://doi.org/10.1007/s00421-020-04306-8.

[79] Müller DC, Boeno FP, Izquierdo M, Aagaard P, Teodoro JL, Grazioli R, et al. Effects of High-Intensity Interval Training Combined With Traditional Strength or Power Training on Functionality and Physical Fitness in Healthy Older Men: A Randomized Controlled Trial. Experimental Gerontology 2021;149:111321. https://doi.org/10.1016/j.exger.2021.111321.

[80] Wu Z, Zhu-ying W, Gao H-E, Zhou X-F, Li F. The Impact of Interval Training on Cardiorespiratory Fitness, Body Composition, Physical Fitness, and Metabolic Parameters in Older Adults: A Systematic Review and Meta-Analysis 2020. https://doi.org/10.21203/rs.2.23869/v1.

[81] Seco‐Calvo J, Inchaurregui LCA, Echevarría E, Barbero I, Torres‐Unda J, Pérez VR, et al. A Long-Term Physical Activity Training Program Increases Strength and Flexibility, and Improves Balance in Older Adults. Rehabilitation Nursing 2013;38:37–47. https://doi.org/10.1002/rnj.64.

[82] Moraes K, Fernandes M, Carvalho VO. Interval Exercise Training in Adult Heart Transplant Recipients. American Journal of Transplantation 2013;13:526. https://doi.org/10.1111/ajt.12051.

[83] Harpham C, Gunn H, Marsden J, Connolly L. The Feasibility, Safety, Physiological and Clinical Effects of High-Intensity Interval Training for People With Parkinson’s: A Systematic Review and Meta-Analysis. Aging Clinical and Experimental Research 2023;35:497–523. https://doi.org/10.1007/s40520-022-02330-6.

[84] Metcalfe RS, Atef H, Mackintosh KA, McNarry MA, Ryde GC, Hill DM, et al. Time-Efficient and Computer-Guided Sprint Interval Exercise Training for Improving Health in the Workplace: A Randomised Mixed-Methods Feasibility Study in Office-Based Employees. BMC Public Health 2020;20. https://doi.org/10.1186/s12889-020-8444-z.

[85] Mwaniki J. Investigating the Impact of Exercise Intensity on Cardiovascular Health Parameters in Kenya. Ajps 2024;2:24–38. https://doi.org/10.47604/ajps.2670.

[86] Larsen LH, Lauritzen MH, Gangstad SW, Kjær TW. The Use of Small Electronic Devices and Health: Feasibility of Interventions for a Forthcoming Crossover Design. Jmir Formative Research 2021;5:e20410. https://doi.org/10.2196/20410.

[87] Burtscher J, Millet GP, Burtscher M. Celebrating 100 Years of VO2max. QJM 2023;116:809–809. https://doi.org/10.1093/qjmed/hcad082.

[88] Kumar A, Gupta M, Kohat AK, Agrawal A, Varshney AC, Chugh A, et al. Impact of High-Intensity Interval Training (HIIT) on Patient Recovery After Myocardial Infarction and Stroke: A Fast Track to Fitness. Cureus 2024. https://doi.org/10.7759/cureus.73910.

[89] Modena R, Impellizzeri FM, Fornasiero A, Schena F. Effects of Low vs. Moderate Dose of Recreational Football on Cardiovascular Risk Factors. European Journal of Sport Science 2022;23:1047–55. https://doi.org/10.1080/17461391.2022.2086488.

[90] Sánchez OA, Hesse AS, Betker MR, Lundstrom CJ, Conroy WE, Gao Z. Cardiovascular Fitness and Associated Comorbidities in an Executive Health Program. Exercise Medicine 2022;6:5. https://doi.org/10.26644/em.2022.005.

[91] Beato M, Coratella G, Schena F, Impellizzeri FM. Effects of Recreational Football Performed Once a Week (1 h Per 12 Weeks) on Cardiovascular Risk Factors in Middle-Aged Sedentary Men. Science and Medicine in Football 2017;1:171–7. https://doi.org/10.1080/24733938.2017.1325966.

[92] Lee B-A. Effects of Regular Aerobic Exercise on Cardiovascular Health Factors and Heart Function in Sedentary Male Office Workers. The Asian Journal of Kinesiology 2024;26:30–8. https://doi.org/10.15758/ajk.2024.26.1.30.

[93] Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DA, Fleenor BS, et al. The Influence of Change in Cardiorespiratory Fitness With Short-Term Exercise Training on Mortality Risk From the Ball State Adult Fitness Longitudinal Lifestyle Study. Mayo Clinic Proceedings 2019;94:1406–14. https://doi.org/10.1016/j.mayocp.2019.01.049.

[94] Ćhilton R. Beyond the Myocardium: Sodium‐glucose Co‐transporter‐2 Inhibitors in Heart Failure. Diabetes Obesity and Metabolism 2021;23:1215–8. https://doi.org/10.1111/dom.14320.

[95] Jafarnezhadgero A, Mamashli E, Granacher U. An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy. Frontiers in Physiology 2021;12. https://doi.org/10.3389/fphys.2021.654755.

[96] Chakkera HA, Angadi SS, Heilman RL, Kaplan B, Scott RL, Bollempalli H, et al. Cardiorespiratory Fitness (Peak Oxygen Uptake): Safe and Effective Measure for Cardiovascular Screening Before Kidney Transplant. Journal of the American Heart Association 2018;7. https://doi.org/10.1161/jaha.118.008662.

[97] Meer S v. d., Zwerink M, Brussel M v., Valk P v. d., Wajon EM, Palen J v. d. Effect of Outpatient Exercise Training Programmes in Patients With Chronic Heart Failure: A Systematic Review. European Journal of Preventive Cardiology 2011;19:795–803. https://doi.org/10.1177/1741826711410516.

[98] Piepoli M. Confronting the Reality of COVID. European Journal of Preventive Cardiology 2020;27:787–8. https://doi.org/10.1177/2047487320926774.

[99] Genç A, Üçok K, Şener Ü, Koyuncu T, Akar O, Çeli̇k S, et al. Association Analyses of Oxidative Stress, Aerobic Capacity, Daily Physical Activity, and Body Composition Parameters in Patients With Mild to Moderate COPD. Turkish Journal of Medical Sciences 2014;44:972–9. https://doi.org/10.3906/sag-1308-65.

[100] Charususin N, Gosselink R, Decramer M, McConnell A, Saey D, Maltais F, et al. Inspiratory Muscle Training Protocol for Patients With Chronic Obstructive Pulmonary Disease (IMTCO Study): A Multicentre Randomised Controlled Trial. BMJ Open 2013;3:e003101. https://doi.org/10.1136/bmjopen-2013-003101.

[101] Sawyer A, Cavalheri V, Hill K. Effects of High Intensity Interval Training on Exercise Capacity in People With Chronic Pulmonary Conditions: A Narrative Review. BMC Sports Science Medicine and Rehabilitation 2020;12. https://doi.org/10.1186/s13102-020-00167-y.

[102] Ramos P d. S, Cláudio Gil Soares de Araújo. Cardiorespiratory Optimal Point During Exercise Testing as a Predictor of All-Cause Mortality. Revista Portuguesa De Cardiologia (English Edition) 2017;36:261–9. https://doi.org/10.1016/j.repce.2016.09.011.

Quality in Sport

Downloads

  • PDF

Published

2025-07-07

How to Cite

1.
CHARKOT, Julia, BIEŃKOWSKI, Wojciech, KUSY, Bartłomiej, BIEŃKOWSKI, Michał, CHARKOT, Mikołaj, KUCHARCZYK, Piotr, JASZCZUK, Irmina and RETMAN, Patrycja. The impact of maximal oxygen uptake (VO₂max) on athletic performance and health - a review. Quality in Sport. Online. 7 July 2025. Vol. 43, p. 61293. [Accessed 7 July 2025]. DOI 10.12775/QS.2025.43.61293.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 43 (2025)

Section

Health Sciences

License

Copyright (c) 2025 Julia Charkot, Wojciech Bieńkowski, Bartłomiej Kusy, Michał Bieńkowski, Mikołaj Charkot, Piotr Kucharczyk, Irmina Jaszczuk, Patrycja Retman

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 47
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

VO₂max, aerobic capacity, cardiorespiratory fitness, exercise physiology, health promotion, endurance training, wearable technology, physical education, public health
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop