Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The Impact of Lifestyle on the Course of Hashimoto’s Disease: The Role of Diet, Physical Activity, and Stress - A Literature Review
  • Home
  • /
  • The Impact of Lifestyle on the Course of Hashimoto’s Disease: The Role of Diet, Physical Activity, and Stress - A Literature Review
  1. Home /
  2. Archives /
  3. Vol. 43 (2025) /
  4. Medical Sciences

The Impact of Lifestyle on the Course of Hashimoto’s Disease: The Role of Diet, Physical Activity, and Stress - A Literature Review

Authors

  • Alicja Podolska The University Hospital in Krakow, Jakubowskiego 2 Street, 30-688 Krakow, Poland https://orcid.org/0009-0002-7690-1406
  • Agnieszka Woźniacka Hospital of Santa Anne in Miechow, Szpitalna 3 Street, 32-200 Miechów, Poland https://orcid.org/0009-0009-7840-499X
  • Barbara Boba 5 th Military Clinical Hospital with Policlinic (SPZOZ) in Cracow, Wrocławska Street 1-3, 30-901 Cracow, Poland https://orcid.org/0009-0004-7939-8783
  • Barbara Chojnacka 5 th Military Clinical Hospital with Policlinic (SPZOZ) in Cracow, Wrocławska Street 1-3, 30-901 Cracow, Poland https://orcid.org/0009-0009-2978-9993
  • Julia Wątor Silesian Medical University in Katowice, Poniatowskiego 15 Street, 40-055 Katowice, Poland https://orcid.org/0009-0003-0120-5198
  • Jerzy Krzeszowiak Jagiellonian University Medical College in Cracow, Santa Anne 12 Street, 31-008 Cracow, Poland https://orcid.org/0000-0002-8831-6565
  • Aleksandra Ożga Warsaw South Hospital, Rotmistrza Witolda Pileckiego Street 99, 02-781 Warsaw, Poland https://orcid.org/0009-0002-1279-543X
  • Patrycja Kolano Medical Center in Łańcut, Ignacego Paderewskiego 5 Street, 37-100 Łańcut, Poland https://orcid.org/0009-0009-1706-5752
  • Sylwia Bryksy 5 th Military Clinical Hospital with Policlinic (SPZOZ) in Cracow, Wrocławska Street 1-3, 30-901 Cracow, Poland https://orcid.org/0009-0007-7877-1541
  • Tomasz Pulanecki The University Hospital in Cracow, Jakubowskiego 2 Street, 30-688 Cracow, Poland https://orcid.org/0009-0005-5662-2268

DOI:

https://doi.org/10.12775/QS.2025.43.61288

Keywords

lifestyle medicine, physical activity, Hashimoto’s thyroiditis, autoimmunity, Mediterranean diet, chronic stress, immune modulation

Abstract

Introduction and purpose of the work: Hashimoto’s thyroiditis (HT), also called chronic autoimmune lymphocytic thyroiditis, is a major cause of hypothyroidism in iodine-sufficient areas. It affects women more often and may co-occur with other autoimmune diseases. HT involves T-cell mediated damage to thyroid cells and the presence of anti-TPO and anti-Tg antibodies. While levothyroxine restores hormone levels, many patients still report fatigue, mood issues, and cognitive problems. This review examines how lifestyle factors—diet, exercise, and stress—affect the course of HT and patient outcomes.

State of knowledge: Environmental and behavioral factors are increasingly recognized in autoimmune disease progression. Diets high in processed foods and low in micronutrients may promote inflammation and gut imbalance, worsening autoimmunity. Sedentary behavior and chronic stress also impair immune function. On the other hand, anti-inflammatory diets, physical activity, and stress management may support immune balance and complement standard HT treatment.

Materials and methods: A literature review was conducted in PubMed for studies up to 2025, including reviews, original articles, and observational studies in English focused on lifestyle factors in HT.

Summary: Lifestyle changes—such as anti-inflammatory diets (e.g., Mediterranean, AIP), regular physical activity, and stress reduction—can improve symptoms and modulate disease markers in HT. These findings support integrating holistic strategies into patient care.

References

1. Caturegli, P., De Remigis, A., & Rose, N. R. (2014). Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmunity Reviews, 13, 391–397. https://doi.org/10.1016/j.autrev.2014.01.007

2. Hashimoto, H. (1912). Zur Kenntnis der lymphomatösen Veränderung der Schilddrüse (Struma lymphomatosa). Archiv für Klinische Chirurgie, 97, 219–248.

3. Pyzik, A., Grywalska, E., Matyjaszek-Matuszek, B., & Rolinski, J. (2015). Immune disorders in Hashimoto’s thyroiditis: What do we know so far? Journal of Immunology Research, 2015, 979167. https://doi.org/10.1155/2015/979167

4. Ihnatowicz, P., Drywień, M., Wątor, P., & Wojsiat, J. (2020). The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Annals of Agricultural and Environmental Medicine, 27, 184–193. https://doi.org/10.26444/aaem/112142

5. American Thyroid Association. (n.d.). Hashimoto’s thyroiditis. https://www.thyroid.org/hashimotos-thyroiditis/

6. TEMD Thyroid Study Group. (2023). Diagnosis and treatment of thyroid disease guideline–2023 (pp. 5–7). Turkish Endocrinology and Metabolism Society.

7. Almahari, S. A., Maki, R., Al Teraifi, N., Alshaikh, S., Chandran, N., & Taha, H. (2023). Hashimoto thyroiditis beyond cytology: A correlation between cytological, hormonal, serological, and radiological findings. Journal of Thyroid Research, 2023, 5707120. https://doi.org/10.1155/2023/5707120

8. Klubo-Gwiezdzinska, J., & Wartofsky, L. (2022). Hashimoto thyroiditis: An evidence-based guide to etiology, diagnosis and treatment. Polish Archives of Internal Medicine, 132, 16222. https://doi.org/10.20452/pamw.16222

9. Wu, G., Zou, D., Cai, H., & Liu, Y. (2016). Ultrasonography in the diagnosis of Hashimoto’s thyroiditis. Frontiers in Bioscience, 21(5), 1006–1012. https://doi.org/10.2741/4437

10. Ralli, M., Angeletti, D., Fiore, M., et al. (2020). Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmunity Reviews, 19(10), 102649. https://doi.org/10.1016/j.autrev.2020.102649

11. Weetman, A. P. (2021). An update on the pathogenesis of Hashimoto’s thyroiditis. Journal of Endocrinological Investigation, 44(5), 883–890. https://doi.org/10.1007/s40618-020-01387-2

12. Siegmann, E. M., Müller, H. H. O., Luecke, C., Philipsen, A., Kornhuber, J., & Grömer, T. W. (2018). Association of depression and anxiety disorders with autoimmune thyroiditis: A systematic review and meta-analysis. JAMA Psychiatry, 75, 577–584. https://doi.org/10.1001/jamapsychiatry.2018.0190

13. Hu, X., Wang, X., Liang, Y., et al. (2022). Cancer risk in Hashimoto’s thyroiditis: A systematic review and meta-analysis. Frontiers in Endocrinology, 13, 937871. https://doi.org/10.3389/fendo.2022.937871

14. Caturegli, P., De Remigis, A., Chuang, K., et al. (2013). Hashimoto's thyroiditis: Celebrating the centennial through the lens of the Johns Hopkins Hospital surgical pathology records. Thyroid, 23, 142–150. https://doi.org/10.1089/thy.2012.0317

15. McLeod, D. S., Caturegli, P., Cooper, D. S., et al. (2014). Variation in rates of autoimmune thyroid disease by race/ethnicity in US military personnel. JAMA, 311, 1563–1565. https://doi.org/10.1001/jama.2014.1997

16. Song, R. H., Yao, Q. M., Wang, B., et al. (2019). Thyroid disorders in patients with myasthenia gravis: A systematic review and meta-analysis. Autoimmunity Reviews, 18, 102368. https://doi.org/10.1016/j.autrev.2019.102368

17. Yao, Q., Song, Z., Wang, B., et al. (2019). Thyroid disorders in patients with systemic sclerosis: A systematic review and meta-analysis. Autoimmunity Reviews, 18, 634–636. https://doi.org/10.1016/j.autrev.2018.12.006

18. Nakamura, H., Usa, T., Motomura, M., et al. (2008). Prevalence of interrelated autoantibodies in thyroid diseases and autoimmune disorders. Journal of Endocrinological Investigation, 31, 861–865. https://doi.org/10.1007/BF03349236

19. Feldt-Rasmussen, U., Hoier-Madsen, M., Bech, K., et al. (1991). Anti-thyroid peroxidase antibodies in thyroid disorders and non-thyroid autoimmune diseases. Autoimmunity, 9, 245–254. https://doi.org/10.3109/08916939109008086

20. Bliddal, S., Nielsen, C. H., & Feldt-Rasmussen, U. (2017). Recent advances in understanding autoimmune thyroid disease: The tallest tree in the forest of polyautoimmunity. F1000Research, 6, 1776. https://doi.org/10.12688/f1000research.12084.1

21. Lazúrová, I., & Benhatchi, K. (2012). Autoimmune thyroid diseases and nonorgan-specific autoimmunity. Polish Archives of Internal Medicine, 122(Suppl 1), 55–59.

22. Zeber-Lubecka, N., & Hennig, E. E. (2021). Genetic susceptibility to joint occurrence of polycystic ovary syndrome and Hashimoto’s thyroiditis: How far is our understanding? Frontiers in Immunology, 12, 606620. https://doi.org/10.3389/fimmu.2021.606620

23. Hu, X., Chen, Y., Shen, Y., et al. (2022). Correlation between Hashimoto’s thyroiditis and polycystic ovary syndrome: A systematic review and meta-analysis. Frontiers in Endocrinology, 13, 1025267. https://doi.org/10.3389/fendo.2022.1025267

24. Dong, Y. H., & Fu, D. G. (2014). Autoimmune thyroid disease: Mechanism, genetics and current knowledge. European Review for Medical and Pharmacological Sciences, 18, 3611–3618.

25. Kyritsi, E. M., & Kanaka-Gantenbein, C. (2020). Autoimmune thyroid disease in specific genetic syndromes in childhood and adolescence. Frontiers in Endocrinology, 11, 543. https://doi.org/10.3389/fendo.2020.00543

26. Brix, T. H., & Hegedüs, L. (2012). Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clinical Endocrinology, 76, 457–464. https://doi.org/10.1111/j.1365-2265.2011.04284.x

27. Brand, O., Gough, S., & Heward, J. (2005). HLA, CTLA-4 and PTPN22: The shared genetic master key to autoimmunity? Expert Reviews in Molecular Medicine, 7, 1–15. https://doi.org/10.1017/S1462399405009194

28. Weetman, A. P. (2013). The immunopathogenesis of chronic autoimmune thyroiditis one century after Hashimoto. European Thyroid Journal, 1, 243–250. https://doi.org/10.1159/000356528

29. Johar, A., Sarmiento Monroy, J. C., Rojas Villarraga, A., et al. (2016). Definition of mutations in polyautoimmunity. Journal of Autoimmunity, 72, 65–72. https://doi.org/10.1016/j.jaut.2016.05.003

30. Santos, L. R., Duraes, C., Mendes, A., et al. (2014). A polymorphism in the promoter region of the selenoprotein S gene (SEPS1) contributes to Hashimoto's thyroiditis susceptibility. Journal of Clinical Endocrinology and Metabolism, 99, E719–E723. https://doi.org/10.1210/jc.2013-3379

31. Jia, X., Wang, B., Yao, Q., et al. (2018). Variations in CD14 gene are associated with autoimmune thyroid diseases in the Chinese population. Frontiers in Endocrinology, 9, 811. https://doi.org/10.3389/fendo.2018.00811

32. Lepez, T., Vandewoestyne, M., & Deforce, D. (2013). Fetal microchimeric cells in autoimmune thyroid diseases: Harmful, beneficial or innocent for the thyroid gland? Chimerism, 4, 111–118. (DOI not found)

33. Mynster Kronborg, T., Frohnert Hansen, J., Nielsen, C. H., et al. (2016). Effects of the commercial flame retardant mixture DE 71 on cytokine production by human immune cells. PLoS One, 11, e0154621. https://doi.org/10.1371/journal.pone.0154621

34. Wiersinga, W. M. (2016). Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinology and Metabolism (Seoul), 31, 213–222. https://doi.org/10.3803/EnM.2016.31.2.213

35. Gong, B., Wang, C., Meng, F., et al. (2021). Association between gut microbiota and autoimmune thyroid disease: A systematic review and meta-analysis. Frontiers in Endocrinology, 12, 774362. https://doi.org/10.3389/fendo.2021.774362

36. Aghini Lombardi, F., Fiore, E., Tonacchera, M., et al. (2013). The effect of voluntary iodine prophylaxis in a small rural community: The Pescopagano survey 15 years later. Journal of Clinical Endocrinology and Metabolism, 98, 1031–1039. https://doi.org/10.1210/jc.2012-3300

37. Carayanniotis, G. (2007). Recognition of thyroglobulin by T cells: The role of iodine. Thyroid, 17, 963–973. https://doi.org/10.1089/thy.2007.0028

38. Alexander, E. K., Pearce, E. N., Brent, G. A., et al. (2017). 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid, 27, 315–389. https://doi.org/10.1089/thy.2016.0457

39. Toulis, K. A., Anastasilakis, A. D., Tzellos, T. G., et al. (2010). Selenium supplementation in the treatment of Hashimoto's thyroiditis: A systematic review and a meta-analysis. Thyroid, 20, 1163–1173. https://doi.org/10.1089/thy.2010.0107

40. Winther, K. H., Wichman, J. E., Bonnema, S. J., et al. (2017). Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine, 55, 376–385. https://doi.org/10.1007/s12020-016-1138-0

41. Metso, S., Hyytiä-Ilmonen, H., Kaukinen, K., et al. (2012). Gluten-free diet and autoimmune thyroiditis in patients with celiac disease: A prospective controlled study. Scandinavian Journal of Gastroenterology, 47, 43–48. https://doi.org/10.3109/00365521.2011.619253

42. Krysiak, R., Szkróbka, W., & Okopień, B. (2019). The effect of gluten-free diet on thyroid autoimmunity in drug-naive women with Hashimoto's thyroiditis: A pilot study. Experimental and Clinical Endocrinology & Diabetes, 127, 417–422. https://doi.org/10.1055/a-0905-7141

43. Giordano, C., Stassi, G., De Maria, R., et al. (1997). Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science, 275, 960–963. https://doi.org/10.1126/science.275.5304.960

44. Ahmed, R., Al Shaikh, S., & Akhtar, M. (2012). Hashimoto thyroiditis: A century later. Advances in Anatomic Pathology, 19, 181–186. https://doi.org/10.1097/PAP.0b013e31825d3fc4

45. Hennessey, J. V. (2011). Clinical review: Riedel's thyroiditis: A clinical review. Journal of Clinical Endocrinology and Metabolism, 96, 3031–3041. https://doi.org/10.1210/jc.2011-1093

46. Stone, J. H., Khosroshahi, A., Deshpande, V., et al. (2012). Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis & Rheumatism, 64, 3061–3067. https://doi.org/10.1002/art.34684

47. Zhang, Q. Y., Ye, X. P., Zhou, Z., et al. (2022). Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto's thyroiditis. Nature Communications, 13, 775. https://doi.org/10.1038/s41467-022-28219-2

48. Pedersen, I. B., Knudsen, N., Jorgensen, T., et al. (2003). Thyroid peroxidase and thyroglobulin autoantibodies in a large survey of populations with mild and moderate iodine deficiency. Clinical Endocrinology, 58, 36–42. https://doi.org/10.1046/j.1365-2265.2003.01708.x

49. Procaccini, C., Carbone, F., Galgani, M., et al. (2011). Obesity and susceptibility to autoimmune diseases. Expert Review of Clinical Immunology, 7, 287–294. https://doi.org/10.1586/eci.11.21

50. Manzel, A., Muller, D. N., Hafler, D. A., et al. (2014). Role of “Western diet” in inflammatory autoimmune diseases. Current Allergy and Asthma Reports, 14, 404. https://doi.org/10.1007/s11882-014-0404-6

51. de Castro, M. M., Pascoal, L. B., Steigleder, K. M., et al. (2021). Role of diet and nutrition in inflammatory bowel disease. World Journal of Experimental Medicine, 11, 1–16. https://doi.org/10.5493/wjem.v11.i1.1

52. Philippou, E., & Nikiphorou, E. (2018). Are we really what we eat? Nutrition and its role in the onset of rheumatoid arthritis. Autoimmunity Reviews, 17, 1074–1077. https://doi.org/10.1016/j.autrev.2018.06.012

53. Alwarith, J., Kahleova, H., Rembert, E., et al. (2019). Nutrition interventions in rheumatoid arthritis: The potential use of plant-based diets. A review. Frontiers in Nutrition, 6, 141. https://doi.org/10.3389/fnut.2019.00141

54. Gioia, C., Lucchino, B., Tarsitano, M. G., et al. (2020). Dietary habits and nutrition in rheumatoid arthritis: Can diet influence disease development and clinical manifestations? Nutrients, 12, 1456. https://doi.org/10.3390/nu12051456

55. Ricketts, J. R., Rothe, M. J., & Grant-Kels, J. M. (2010). Nutrition and psoriasis. Clinical Dermatology, 28(6), 615–626. https://doi.org/10.1016/j.clindermatol.2010.04.001

56. Christ, A., Lauterbach, M., & Latz, E. (2019). Western diet and the immune system: An inflammatory connection. Immunity, 51(5), 794–811. https://doi.org/10.1016/j.immuni.2019.09.020

57. Mahmoudi, M., & Rezaei, N. (Eds.). (2019). Nutrition and immunity. Springer Nature. https://doi.org/10.1007/978-3-030-15187-6

58. McCord, J. M. (1993). Human disease, free radicals, and the oxidant/antioxidant balance. Clinical Biochemistry, 26(5), 351–357. https://doi.org/10.1016/0009-9120(93)90085-O

59. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001

60. Ruggeri, R. M., Vicchio, T. M., Cristani, M., et al. (2016). Oxidative stress and advanced glycation end products in Hashimoto’s thyroiditis. Thyroid, 26(4), 504–511. https://doi.org/10.1089/thy.2015.0436

61. Ruggeri, R. M., Cristani, M. T., Crupi, F. S., et al. (2022). Evaluation of paraoxonase activity and association with serum advanced glycation end products as reliable markers of oxidative stress in Hashimoto’s thyroiditis. Minerva Endocrinologica. https://doi.org/10.23736/S0391-1977.22.04702-8

62. Brady, D. M. (2012). Autoimmune disease: A modern epidemic? Molecular mimicry, the hygiene hypothesis, stealth infections, and other examples of disconnect between medical research and the practice of clinical medicine. Townsend Letter, (347), 45–50.

63. Merra, G., Noce, A., Marrone, G., et al. (2021). Influence of Mediterranean diet on human gut microbiota. Nutrients, 13(7), 2279. https://doi.org/10.3390/nu13072279

64. Requena, T., Martínez-Cuesta, M. C., & Peláez, C. (2018). Diet and microbiota linked in health and disease. Food Function, 9(2), 688–704. https://doi.org/10.1039/C7FO01599A

65. Rinninella, E., Cintoni, M., Raoul, P., et al. (2019). Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 11(10), 2393. https://doi.org/10.3390/nu11102393

66. Barrea, L., Muscogiuri, G., Frias-Toral, E., et al. (2021). Nutrition and immune system: From the Mediterranean diet to dietary supplements through the microbiota. Critical Reviews in Food Science and Nutrition, 61(18), 3066–3090. https://doi.org/10.1080/10408398.2020.1724137

67. Lerner, A., & Matthias, T. (2015). Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews, 14(6), 479–489. https://doi.org/10.1016/j.autrev.2015.01.003

68. Ruggeri, R. M., Giovinazzo, S., Barbalace, M. C., et al. (2021). Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid, 31(1), 96–105. https://doi.org/10.1089/thy.2020.0223

69. Keys, A., Menotti, A., Aravanis, C., et al. (1984). The seven countries study: 2289 deaths in 15 years. Preventive Medicine, 13(2), 141–154. https://doi.org/10.1016/0091-7435(84)90004-7

70. Angeloni, C., Malaguti, M., Barbalace, M. C., & Hrelia, S. (2017). Bioactivity of olive oil phenols in neuroprotection. International Journal of Molecular Sciences, 18(11), 2230. https://doi.org/10.3390/ijms18112230

71. Schwingshackl, L., Morze, J., & Hoffmann, G. (2020). Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. British Journal of Pharmacology, 177(6), 1241–1257. https://doi.org/10.1111/bph.14948

72. Kapoor, B., Kapoor, D., Gautam, S., et al. (2021). Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Current Nutrition Reports, 10(3), 232–242. https://doi.org/10.1007/s13668-021-00352-5

73. Calder, P. C. (2017). Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions, 45(5), 1105–1115. https://doi.org/10.1042/BST20160474

74. Jacobs, D. R., Gross, M. D., & Tapsell, L. C. (2009). Food synergy: An operational concept for understanding nutrition. The American Journal of Clinical Nutrition, 89(5), 1543S–1548S. https://doi.org/10.3945/ajcn.2009.26736Q

75. Hrelia, S., Barbalace, M. C., Cannavò, S., & Ruggeri, R. M. (2023). Commentary: Fish and the thyroid: A Janus Bifrons relationship caused by pollutants and the omega-3 polyunsaturated fatty acids. Frontiers in Endocrinology, 14, 1138245. https://doi.org/10.3389/fendo.2023.1138245

76. Di Daniele, N., Noce, A., Vidiri, M. F., et al. (2017). Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget, 8(47), 8947–8979. https://doi.org/10.18632/oncotarget.13557

77. Kesse-Guyot, E., Ahluwalia, N., Lassale, C., et al. (2013). Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutrition, Metabolism and Cardiovascular Diseases, 23(7), 677–683. https://doi.org/10.1016/j.numecd.2012.03.001

78. Salas-Salvadó, J., Fernández-Ballart, J., Ros, E., et al. (2008). Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: One-year results of the PREDIMED randomized trial. Archives of Internal Medicine, 168(22), 2449–2458. https://doi.org/10.1001/archinte.168.22.2449

79. Romaguera, D., Guevara, M., Norat, T., et al. (2011). Mediterranean diet and type 2 diabetes risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study: The InterAct project. Diabetes Care, 34(8), 1913–1918. https://doi.org/10.2337/dc11-0294

80. Salas-Salvadó, J., Bulló, M., Babio, N., et al. (2011). Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 34(1), 14–19. https://doi.org/10.2337/dc10-1839

81. Laudisio, D., Barrea, L., Muscogiuri, G., et al. (2020). Breast cancer prevention in premenopausal women: Role of the Mediterranean diet and its components. Nutrition Research Reviews, 33(1), 19–32. https://doi.org/10.1017/S0954422419000171

82. Maruca, A., Catalano, R., Bagetta, D., et al. (2019). The Mediterranean diet as source of bioactive compounds with multi-targeting anti-cancer profile. European Journal of Medicinal Chemistry, 181, 111579. https://doi.org/10.1016/j.ejmech.2019.06.061

83. de la Rubia Ortí, J. E., García-Pardo, M. P., Drehmer, E., et al. (2018). Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched Mediterranean diet: A pilot study. Journal of Alzheimer's Disease, 65, 577–587. https://doi.org/10.3233/JAD-180266

84. Gardener, H., & Caunca, M. R. (2018). Mediterranean diet in preventing neurodegenerative diseases. Current Nutrition Reports, 7, 10–20. https://doi.org/10.1007/s13668-018-0226-1

85. Santangelo, C., Vari, R., Scazzocchio, B., et al. (2018). Anti-inflammatory activity of extra virgin olive oil polyphenols: Which role in the prevention and treatment of immune-mediated inflammatory diseases? Endocrine, Metabolic & Immune Disorders Drug Targets, 18, 36–50. https://doi.org/10.2174/1871530317666170215120422

86. Li, X., Bi, X., Wang, S., et al. (2019). Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases. Frontiers in Immunology, 10, 2241. https://doi.org/10.3389/fimmu.2019.02241

87. UNESCO. (n.d.). Mediterranean Diet. Retrieved from https://ich.unesco.org/en/RL/mediterranean-diet-00884

88. Ruggeri, R. M., Barbalace, M. C., Croce, L., Malaguti, M., Campennì, A., Rotondi, M., et al. (2023). Autoimmune thyroid disorders: The Mediterranean diet as a protective choice. Nutrients, 15(18), 3953. https://doi.org/10.3390/nu15183953

89. Abbott, R. D., Hashimoto, M., Kaname, T., et al. (2019). The autoimmune protocol diet modifies clinical and serologic features in Hashimoto’s thyroiditis: A 10-week pilot study. Cureus, 11(10), e4556. https://doi.org/10.7759/cureus.4556

90. Lee, Y. J., Cho, S. W., Lim, Y. H., Kim, B. N., Kim, J. I., Hong, Y. C., Park, Y. J., Shin, C. H., & Lee, Y. A. (2023). Relationship of iodine excess with thyroid function in 6-year-old children living in an iodine-replete area. Frontiers in Endocrinology, 14, 1099824. https://doi.org/10.3389/fendo.2023.1099824

91. Lisco, G., De Tullio, A., Triggiani, D., Zupo, R., Giagulli, V. A., De Pergola, G., et al. (2023). Iodine deficiency and iodine prophylaxis: An overview and update. Nutrients, 15, 1004. https://doi.org/10.3390/nu15041004

92. Yu, Z., Yu, Y., Wan, Y., Fan, J., Meng, H., Li, S., et al. (2021). Iodine intake level and incidence of thyroid disease in adults in Shaanxi province: A cross-sectional study. Annals of Translational Medicine, 9, 1567. https://doi.org/10.21037/atm-21-3373

93. Duntas, L. H. (2015). The role of iodine and selenium in autoimmune thyroiditis. Hormone and Metabolic Research, 47, 721–726. https://doi.org/10.1055/s-0035-1554713

94. Palaniappan, S., Shanmughavelu, L., Prasad, H. K., Subramaniam, S., Krishnamoorthy, N., & Lakkappa, L. (2017). Improving iodine nutritional status and increasing prevalence of autoimmune thyroiditis in children. Indian Journal of Endocrinology and Metabolism, 21, 85–89. https://doi.org/10.4103/2230-8210.196026

95. Yokomichi, H., Mochizuki, M., Kojima, R., Horiuchi, S., Ooka, T., Akiyama, Y., et al. (2022). Mother’s iodine exposure and infants’ hypothyroidism: The Japan Environment and Children’s Study (JECS). Endocrine Journal, 69, 9–21. https://doi.org/10.1507/endocrj.EJ21-0462

96. Danailova, Y., Velikova, T., Nikolaev, G., et al. (2022). Nutritional management of thyroiditis of Hashimoto. International Journal of Molecular Sciences, 23, 5144. https://doi.org/10.3390/ijms23095144

97. Ruggeri, R. M., Giovinazzo, S., Barbalace, M. C., Cristani, M., Alibrandi, A., Vicchio, T. M., et al. (2020). Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid. https://doi.org/10.1089/thy.2020.0299

98. Lacka, K., & Szeliga, A. (2015). Significance of selenium in thyroid physiology and pathology. Polski Merkuriusz Lekarski, 38, 348–353.

99. Szeliga, A., Czyżyk, A., Niedzielski, P., Mleczek, M., Maciejewski, A., Dorszewska, J., et al. (2018). Assessment of serum selenium concentration in patients with autoimmune thyroiditis in Poznań district. Polski Merkuriusz Lekarski, 45, 150–153.

100. Wu, Q., Wang, Y., Chen, P., Wei, J., Lv, H., Wang, S., et al. (2022). Increased incidence of Hashimoto thyroiditis in selenium deficiency: A prospective 6-year cohort study. Journal of Clinical Endocrinology & Metabolism, 107(11), e3603–e3611. https://doi.org/10.1210/clinem/dgac496

101. Cinemre, D. A., Cinemre, G. C., Serinkan, F. B., Degirmencioglu, S., Bahtiyar, N., & Aydemir, B. (2022). The role of selenium, selenoproteins and oxidative DNA damage in etiopathogenesis of Hashimoto thyroiditis. Journal of Elementology, 27(3), 755–764. https://doi.org/10.5601/jelem.2022.27.3.2507

102. Rostami, R., Nourooz-Zadeh, S., Mohammadi, A., Khalkhali, H. R., Ferns, G., & Nourooz-Zadeh, J. (2020). Serum selenium status and its interrelationship with serum biomarkers of thyroid function and antioxidant defense in Hashimoto’s thyroiditis. Antioxidants, 9(11), 1070. https://doi.org/10.3390/antiox9111070

103. Hu, Y., Feng, W., Chen, H., Shi, H., Jiang, L., Zheng, X., et al. (2021). Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto’s thyroiditis: A prospective randomized-controlled trial. Clinical and Translational Science, 14(4), 1390–1402. https://doi.org/10.1111/cts.13078

104. Wang, L. F., Sun, R. X., Li, C. F., & Wang, X. H. (2021). The effects of selenium supplementation on antibody titres in patients with Hashimoto’s thyroiditis. Endokrynologia Polska, 72(6), 666–667. https://doi.org/10.5603/EP.a2021.0076

105. Pirola, I., Gandossi, E., Agosti, B., Delbarba, A., & Cappelli, C. (2016). Selenium supplementation could restore euthyroidism in subclinical hypothyroid patients with autoimmune thyroiditis. Endokrynologia Polska, 67(6), 567–571.

106. Manevska, N., Stojanoski, S., & Makazlieva, T. (2019). Selenium treatment effect in auto-immune Hashimoto thyroiditis in Macedonian population. Journal of Endocrinology and Metabolism, 9(1), 22–28.

107. Kalicanin, D., Cvek, M., Baric, A., Skrabic, V., Punda, A., & Boraska Perica, V. (2023). Associations between vitamin D levels and dietary patterns in patients with Hashimoto’s thyroiditis. Frontiers in Nutrition, 10, 1188612. https://doi.org/10.3389/fnut.2023.1188612

108. Czarnywojtek, A., Florek, E., Pietrńczyk, K., Sawicka-Gutaj, N., Ruchała, M., Ronen, O., et al. (2023). The role of vitamin D in autoimmune thyroid diseases: A narrative review. Journal of Clinical Medicine, 12(5), 1452. https://doi.org/10.3390/jcm12051452

109. Siddiq, A., Naveed, A. K., Ghaffar, N., Aamir, M., & Ahmed, N. (2023). Association of pro-inflammatory cytokines with vitamin D in Hashimoto’s thyroid autoimmune disease. Medicina (Kaunas), 59(5), 853. https://doi.org/10.3390/medicina59050853

110. Maciejewski, A., Kowalczyk, M. J., Herman, W., Czyżyk, A., Kowalska, M., Żaba, R., et al. (2019). Vitamin D receptor gene polymorphisms and autoimmune thyroiditis: Are they associated with disease occurrence and its features? BioMed Research International, 2019, 8197580. https://doi.org/10.1155/2019/8197580

111. Chao, G., Zhu, Y., & Fang, L. (2020). Correlation between Hashimoto’s thyroiditis-related thyroid hormone levels and 25-hydroxyvitamin D. Frontiers in Endocrinology (Lausanne), 11, 4. https://doi.org/10.3389/fendo.2020.00004

112. Xu, J., Zhu, X. Y., Sun, H., Xu, X. Q., Xu, S. A., Suo, Y., et al. (2018). Low vitamin D levels are associated with cognitive impairment in patients with Hashimoto thyroiditis. BMC Endocrine Disorders, 18, 87. https://doi.org/10.1186/s12902-018-0281-z

113. Kim, D. (2016). Low vitamin D status is associated with hypothyroid Hashimoto’s thyroiditis. Hormones (Athens), 15(3), 385–393. https://doi.org/10.14310/horm.2002.1612

114. Gierach, M., & Junik, R. (2023). The role of vitamin D in women with Hashimoto’s thyroiditis. Endokrynologia Polska, 74(2), 176–180. https://doi.org/10.5603/EP.a2022.0122

115. Rola, R., Trusewicz, E., Bieńkowski, T., & Studzińska, S. (2021). Application of dried blood spots and serum samples for the determination of vitamin D metabolites in the group of healthy women and with Hashimoto’s thyroiditis. Chromatographia, 84, 695–701. https://doi.org/10.1007/s10337-021-04092-3

116. Anaraki, P. V., Aminorroaya, A., Amini, M., Momeni, F., Feizi, A., Iraj, B., et al. (2017). Effect of vitamin D deficiency treatment on thyroid function and autoimmunity markers in Hashimoto’s thyroiditis: A double-blind randomized placebo-controlled clinical trial. Journal of Research in Medical Sciences, 22, 103.

117. Yavuzer, H., Işık, S., Cengiz, M., Bolayırlı, İ. M., Döventaş, A., & Erdinçler, D. S. (2017). The relationship between vitamin D levels and receptor activator of nuclear factor ligand in Hashimoto’s thyroiditis. Medical Bulletin of Haseki, 55(3), 261–268.

118. Cvek, M., Kalicanin, D., Baric, A., Vuletic, M., Gunjaca, I., Lovric, V. T., et al. (2021). Vitamin D and Hashimoto’s thyroiditis: Observations from CROHT Biobank. Nutrients, 13(8), 2793. https://doi.org/10.3390/nu13082793

119. Botelho, I. M. B., Neto, A. M., Silva, C. A., Tambascia, M. A., Alegre, S. M., & Zantut-Wittmann, D. E. (2018). Vitamin D in Hashimoto’s thyroiditis and its relationship with thyroid function and inflammatory status. Endocrine Journal, 65(10), 1029–1037. https://doi.org/10.1507/endocrj.EJ18-0217

120. Filipova, L., Lazurova, Z., Fulop, P., & Lazurova, I. (2023). Vitamin D insufficiency is not associated with thyroid autoimmunity in Slovak women with Hashimoto’s disease. Bratislavské lekárske listy, 124(3), 182–186.

121. Maciejewski, A., Wójcicka, M., Roszak, M., Losy, J., & Łącka, K. (2015). Assessment of vitamin D level in autoimmune thyroiditis patients and a control group in the Polish population. Advances in Clinical and Experimental Medicine, 24(5), 801–806. https://doi.org/10.17219/acem/32677

122. Gasic, S., Smiljic, S., Milanovic, Z., Gasic, M., Ilic, S., & Bogosavlijevic, I., et al. (2023). Relationship between low vitamin D levels with Hashimoto thyroiditis. Srp Arh Celok Lek, 151(5–6), 296–301.

123. Kamińska, W., Wiśniewska, K., & Okręglicka, K., et al. (2023). Lifestyle intervention towards Mediterranean diet, physical activity adherence and anthropometric parameters in women with Hashimoto’s thyroiditis. Annals of Agricultural and Environmental Medicine, 30(1), 111–117. https://doi.org/10.26444/aaem/162393

124. Vaivode, I., Zake, T., Strele, I., et al. (2023). Stress-related immune response and selenium status in autoimmune thyroid disease patients. International Journal of Molecular Sciences, 24(3), 2440. https://doi.org/10.3390/ijms24032440

125. Hong, H., & Lee, J. (2022). Thyroid-stimulating hormone as a biomarker for stress after thyroid surgery: A prospective cohort study. Medical Science Monitor, 28, e937957. https://doi.org/10.12659/MSM.937957

Cyna, W., Wojciechowska, A., Szybiak-Skora, W., & Lacka, K. (2024). The impact of environmental factors on the development of autoimmune thyroiditis—Review. Biomedicines, 12(8), 1788. https://doi.org/10.3390/biomedicines12081788

Quality in Sport

Downloads

  • PDF

Published

2025-07-04

How to Cite

1.
PODOLSKA, Alicja, WOŹNIACKA, Agnieszka, BOBA, Barbara, CHOJNACKA, Barbara, WĄTOR, Julia, KRZESZOWIAK, Jerzy, OŻGA, Aleksandra, KOLANO, Patrycja, BRYKSY, Sylwia and PULANECKI, Tomasz. The Impact of Lifestyle on the Course of Hashimoto’s Disease: The Role of Diet, Physical Activity, and Stress - A Literature Review. Quality in Sport. Online. 4 July 2025. Vol. 43, p. 61288. [Accessed 6 July 2025]. DOI 10.12775/QS.2025.43.61288.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 43 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Alicja Podolska, Agnieszka Woźniacka, Barbara Boba, Barbara Chojnacka, Julia Wątor, Jerzy Krzeszowiak, Aleksandra Ożga, Patrycja Kolano, Sylwia Bryksy, Tomasz Pulanecki

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 27
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

lifestyle medicine, physical activity, Hashimoto’s thyroiditis, autoimmunity, Mediterranean diet, chronic stress, immune modulation
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop