The Impact of Lifestyle on the Course of Hashimoto’s Disease: The Role of Diet, Physical Activity, and Stress - A Literature Review
DOI:
https://doi.org/10.12775/QS.2025.43.61288Keywords
lifestyle medicine, physical activity, Hashimoto’s thyroiditis, autoimmunity, Mediterranean diet, chronic stress, immune modulationAbstract
Introduction and purpose of the work: Hashimoto’s thyroiditis (HT), also called chronic autoimmune lymphocytic thyroiditis, is a major cause of hypothyroidism in iodine-sufficient areas. It affects women more often and may co-occur with other autoimmune diseases. HT involves T-cell mediated damage to thyroid cells and the presence of anti-TPO and anti-Tg antibodies. While levothyroxine restores hormone levels, many patients still report fatigue, mood issues, and cognitive problems. This review examines how lifestyle factors—diet, exercise, and stress—affect the course of HT and patient outcomes.
State of knowledge: Environmental and behavioral factors are increasingly recognized in autoimmune disease progression. Diets high in processed foods and low in micronutrients may promote inflammation and gut imbalance, worsening autoimmunity. Sedentary behavior and chronic stress also impair immune function. On the other hand, anti-inflammatory diets, physical activity, and stress management may support immune balance and complement standard HT treatment.
Materials and methods: A literature review was conducted in PubMed for studies up to 2025, including reviews, original articles, and observational studies in English focused on lifestyle factors in HT.
Summary: Lifestyle changes—such as anti-inflammatory diets (e.g., Mediterranean, AIP), regular physical activity, and stress reduction—can improve symptoms and modulate disease markers in HT. These findings support integrating holistic strategies into patient care.
References
1. Caturegli, P., De Remigis, A., & Rose, N. R. (2014). Hashimoto thyroiditis: Clinical and diagnostic criteria. Autoimmunity Reviews, 13, 391–397. https://doi.org/10.1016/j.autrev.2014.01.007
2. Hashimoto, H. (1912). Zur Kenntnis der lymphomatösen Veränderung der Schilddrüse (Struma lymphomatosa). Archiv für Klinische Chirurgie, 97, 219–248.
3. Pyzik, A., Grywalska, E., Matyjaszek-Matuszek, B., & Rolinski, J. (2015). Immune disorders in Hashimoto’s thyroiditis: What do we know so far? Journal of Immunology Research, 2015, 979167. https://doi.org/10.1155/2015/979167
4. Ihnatowicz, P., Drywień, M., Wątor, P., & Wojsiat, J. (2020). The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Annals of Agricultural and Environmental Medicine, 27, 184–193. https://doi.org/10.26444/aaem/112142
5. American Thyroid Association. (n.d.). Hashimoto’s thyroiditis. https://www.thyroid.org/hashimotos-thyroiditis/
6. TEMD Thyroid Study Group. (2023). Diagnosis and treatment of thyroid disease guideline–2023 (pp. 5–7). Turkish Endocrinology and Metabolism Society.
7. Almahari, S. A., Maki, R., Al Teraifi, N., Alshaikh, S., Chandran, N., & Taha, H. (2023). Hashimoto thyroiditis beyond cytology: A correlation between cytological, hormonal, serological, and radiological findings. Journal of Thyroid Research, 2023, 5707120. https://doi.org/10.1155/2023/5707120
8. Klubo-Gwiezdzinska, J., & Wartofsky, L. (2022). Hashimoto thyroiditis: An evidence-based guide to etiology, diagnosis and treatment. Polish Archives of Internal Medicine, 132, 16222. https://doi.org/10.20452/pamw.16222
9. Wu, G., Zou, D., Cai, H., & Liu, Y. (2016). Ultrasonography in the diagnosis of Hashimoto’s thyroiditis. Frontiers in Bioscience, 21(5), 1006–1012. https://doi.org/10.2741/4437
10. Ralli, M., Angeletti, D., Fiore, M., et al. (2020). Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmunity Reviews, 19(10), 102649. https://doi.org/10.1016/j.autrev.2020.102649
11. Weetman, A. P. (2021). An update on the pathogenesis of Hashimoto’s thyroiditis. Journal of Endocrinological Investigation, 44(5), 883–890. https://doi.org/10.1007/s40618-020-01387-2
12. Siegmann, E. M., Müller, H. H. O., Luecke, C., Philipsen, A., Kornhuber, J., & Grömer, T. W. (2018). Association of depression and anxiety disorders with autoimmune thyroiditis: A systematic review and meta-analysis. JAMA Psychiatry, 75, 577–584. https://doi.org/10.1001/jamapsychiatry.2018.0190
13. Hu, X., Wang, X., Liang, Y., et al. (2022). Cancer risk in Hashimoto’s thyroiditis: A systematic review and meta-analysis. Frontiers in Endocrinology, 13, 937871. https://doi.org/10.3389/fendo.2022.937871
14. Caturegli, P., De Remigis, A., Chuang, K., et al. (2013). Hashimoto's thyroiditis: Celebrating the centennial through the lens of the Johns Hopkins Hospital surgical pathology records. Thyroid, 23, 142–150. https://doi.org/10.1089/thy.2012.0317
15. McLeod, D. S., Caturegli, P., Cooper, D. S., et al. (2014). Variation in rates of autoimmune thyroid disease by race/ethnicity in US military personnel. JAMA, 311, 1563–1565. https://doi.org/10.1001/jama.2014.1997
16. Song, R. H., Yao, Q. M., Wang, B., et al. (2019). Thyroid disorders in patients with myasthenia gravis: A systematic review and meta-analysis. Autoimmunity Reviews, 18, 102368. https://doi.org/10.1016/j.autrev.2019.102368
17. Yao, Q., Song, Z., Wang, B., et al. (2019). Thyroid disorders in patients with systemic sclerosis: A systematic review and meta-analysis. Autoimmunity Reviews, 18, 634–636. https://doi.org/10.1016/j.autrev.2018.12.006
18. Nakamura, H., Usa, T., Motomura, M., et al. (2008). Prevalence of interrelated autoantibodies in thyroid diseases and autoimmune disorders. Journal of Endocrinological Investigation, 31, 861–865. https://doi.org/10.1007/BF03349236
19. Feldt-Rasmussen, U., Hoier-Madsen, M., Bech, K., et al. (1991). Anti-thyroid peroxidase antibodies in thyroid disorders and non-thyroid autoimmune diseases. Autoimmunity, 9, 245–254. https://doi.org/10.3109/08916939109008086
20. Bliddal, S., Nielsen, C. H., & Feldt-Rasmussen, U. (2017). Recent advances in understanding autoimmune thyroid disease: The tallest tree in the forest of polyautoimmunity. F1000Research, 6, 1776. https://doi.org/10.12688/f1000research.12084.1
21. Lazúrová, I., & Benhatchi, K. (2012). Autoimmune thyroid diseases and nonorgan-specific autoimmunity. Polish Archives of Internal Medicine, 122(Suppl 1), 55–59.
22. Zeber-Lubecka, N., & Hennig, E. E. (2021). Genetic susceptibility to joint occurrence of polycystic ovary syndrome and Hashimoto’s thyroiditis: How far is our understanding? Frontiers in Immunology, 12, 606620. https://doi.org/10.3389/fimmu.2021.606620
23. Hu, X., Chen, Y., Shen, Y., et al. (2022). Correlation between Hashimoto’s thyroiditis and polycystic ovary syndrome: A systematic review and meta-analysis. Frontiers in Endocrinology, 13, 1025267. https://doi.org/10.3389/fendo.2022.1025267
24. Dong, Y. H., & Fu, D. G. (2014). Autoimmune thyroid disease: Mechanism, genetics and current knowledge. European Review for Medical and Pharmacological Sciences, 18, 3611–3618.
25. Kyritsi, E. M., & Kanaka-Gantenbein, C. (2020). Autoimmune thyroid disease in specific genetic syndromes in childhood and adolescence. Frontiers in Endocrinology, 11, 543. https://doi.org/10.3389/fendo.2020.00543
26. Brix, T. H., & Hegedüs, L. (2012). Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. Clinical Endocrinology, 76, 457–464. https://doi.org/10.1111/j.1365-2265.2011.04284.x
27. Brand, O., Gough, S., & Heward, J. (2005). HLA, CTLA-4 and PTPN22: The shared genetic master key to autoimmunity? Expert Reviews in Molecular Medicine, 7, 1–15. https://doi.org/10.1017/S1462399405009194
28. Weetman, A. P. (2013). The immunopathogenesis of chronic autoimmune thyroiditis one century after Hashimoto. European Thyroid Journal, 1, 243–250. https://doi.org/10.1159/000356528
29. Johar, A., Sarmiento Monroy, J. C., Rojas Villarraga, A., et al. (2016). Definition of mutations in polyautoimmunity. Journal of Autoimmunity, 72, 65–72. https://doi.org/10.1016/j.jaut.2016.05.003
30. Santos, L. R., Duraes, C., Mendes, A., et al. (2014). A polymorphism in the promoter region of the selenoprotein S gene (SEPS1) contributes to Hashimoto's thyroiditis susceptibility. Journal of Clinical Endocrinology and Metabolism, 99, E719–E723. https://doi.org/10.1210/jc.2013-3379
31. Jia, X., Wang, B., Yao, Q., et al. (2018). Variations in CD14 gene are associated with autoimmune thyroid diseases in the Chinese population. Frontiers in Endocrinology, 9, 811. https://doi.org/10.3389/fendo.2018.00811
32. Lepez, T., Vandewoestyne, M., & Deforce, D. (2013). Fetal microchimeric cells in autoimmune thyroid diseases: Harmful, beneficial or innocent for the thyroid gland? Chimerism, 4, 111–118. (DOI not found)
33. Mynster Kronborg, T., Frohnert Hansen, J., Nielsen, C. H., et al. (2016). Effects of the commercial flame retardant mixture DE 71 on cytokine production by human immune cells. PLoS One, 11, e0154621. https://doi.org/10.1371/journal.pone.0154621
34. Wiersinga, W. M. (2016). Clinical relevance of environmental factors in the pathogenesis of autoimmune thyroid disease. Endocrinology and Metabolism (Seoul), 31, 213–222. https://doi.org/10.3803/EnM.2016.31.2.213
35. Gong, B., Wang, C., Meng, F., et al. (2021). Association between gut microbiota and autoimmune thyroid disease: A systematic review and meta-analysis. Frontiers in Endocrinology, 12, 774362. https://doi.org/10.3389/fendo.2021.774362
36. Aghini Lombardi, F., Fiore, E., Tonacchera, M., et al. (2013). The effect of voluntary iodine prophylaxis in a small rural community: The Pescopagano survey 15 years later. Journal of Clinical Endocrinology and Metabolism, 98, 1031–1039. https://doi.org/10.1210/jc.2012-3300
37. Carayanniotis, G. (2007). Recognition of thyroglobulin by T cells: The role of iodine. Thyroid, 17, 963–973. https://doi.org/10.1089/thy.2007.0028
38. Alexander, E. K., Pearce, E. N., Brent, G. A., et al. (2017). 2017 Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and the postpartum. Thyroid, 27, 315–389. https://doi.org/10.1089/thy.2016.0457
39. Toulis, K. A., Anastasilakis, A. D., Tzellos, T. G., et al. (2010). Selenium supplementation in the treatment of Hashimoto's thyroiditis: A systematic review and a meta-analysis. Thyroid, 20, 1163–1173. https://doi.org/10.1089/thy.2010.0107
40. Winther, K. H., Wichman, J. E., Bonnema, S. J., et al. (2017). Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine, 55, 376–385. https://doi.org/10.1007/s12020-016-1138-0
41. Metso, S., Hyytiä-Ilmonen, H., Kaukinen, K., et al. (2012). Gluten-free diet and autoimmune thyroiditis in patients with celiac disease: A prospective controlled study. Scandinavian Journal of Gastroenterology, 47, 43–48. https://doi.org/10.3109/00365521.2011.619253
42. Krysiak, R., Szkróbka, W., & Okopień, B. (2019). The effect of gluten-free diet on thyroid autoimmunity in drug-naive women with Hashimoto's thyroiditis: A pilot study. Experimental and Clinical Endocrinology & Diabetes, 127, 417–422. https://doi.org/10.1055/a-0905-7141
43. Giordano, C., Stassi, G., De Maria, R., et al. (1997). Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science, 275, 960–963. https://doi.org/10.1126/science.275.5304.960
44. Ahmed, R., Al Shaikh, S., & Akhtar, M. (2012). Hashimoto thyroiditis: A century later. Advances in Anatomic Pathology, 19, 181–186. https://doi.org/10.1097/PAP.0b013e31825d3fc4
45. Hennessey, J. V. (2011). Clinical review: Riedel's thyroiditis: A clinical review. Journal of Clinical Endocrinology and Metabolism, 96, 3031–3041. https://doi.org/10.1210/jc.2011-1093
46. Stone, J. H., Khosroshahi, A., Deshpande, V., et al. (2012). Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations. Arthritis & Rheumatism, 64, 3061–3067. https://doi.org/10.1002/art.34684
47. Zhang, Q. Y., Ye, X. P., Zhou, Z., et al. (2022). Lymphocyte infiltration and thyrocyte destruction are driven by stromal and immune cell components in Hashimoto's thyroiditis. Nature Communications, 13, 775. https://doi.org/10.1038/s41467-022-28219-2
48. Pedersen, I. B., Knudsen, N., Jorgensen, T., et al. (2003). Thyroid peroxidase and thyroglobulin autoantibodies in a large survey of populations with mild and moderate iodine deficiency. Clinical Endocrinology, 58, 36–42. https://doi.org/10.1046/j.1365-2265.2003.01708.x
49. Procaccini, C., Carbone, F., Galgani, M., et al. (2011). Obesity and susceptibility to autoimmune diseases. Expert Review of Clinical Immunology, 7, 287–294. https://doi.org/10.1586/eci.11.21
50. Manzel, A., Muller, D. N., Hafler, D. A., et al. (2014). Role of “Western diet” in inflammatory autoimmune diseases. Current Allergy and Asthma Reports, 14, 404. https://doi.org/10.1007/s11882-014-0404-6
51. de Castro, M. M., Pascoal, L. B., Steigleder, K. M., et al. (2021). Role of diet and nutrition in inflammatory bowel disease. World Journal of Experimental Medicine, 11, 1–16. https://doi.org/10.5493/wjem.v11.i1.1
52. Philippou, E., & Nikiphorou, E. (2018). Are we really what we eat? Nutrition and its role in the onset of rheumatoid arthritis. Autoimmunity Reviews, 17, 1074–1077. https://doi.org/10.1016/j.autrev.2018.06.012
53. Alwarith, J., Kahleova, H., Rembert, E., et al. (2019). Nutrition interventions in rheumatoid arthritis: The potential use of plant-based diets. A review. Frontiers in Nutrition, 6, 141. https://doi.org/10.3389/fnut.2019.00141
54. Gioia, C., Lucchino, B., Tarsitano, M. G., et al. (2020). Dietary habits and nutrition in rheumatoid arthritis: Can diet influence disease development and clinical manifestations? Nutrients, 12, 1456. https://doi.org/10.3390/nu12051456
55. Ricketts, J. R., Rothe, M. J., & Grant-Kels, J. M. (2010). Nutrition and psoriasis. Clinical Dermatology, 28(6), 615–626. https://doi.org/10.1016/j.clindermatol.2010.04.001
56. Christ, A., Lauterbach, M., & Latz, E. (2019). Western diet and the immune system: An inflammatory connection. Immunity, 51(5), 794–811. https://doi.org/10.1016/j.immuni.2019.09.020
57. Mahmoudi, M., & Rezaei, N. (Eds.). (2019). Nutrition and immunity. Springer Nature. https://doi.org/10.1007/978-3-030-15187-6
58. McCord, J. M. (1993). Human disease, free radicals, and the oxidant/antioxidant balance. Clinical Biochemistry, 26(5), 351–357. https://doi.org/10.1016/0009-9120(93)90085-O
59. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
60. Ruggeri, R. M., Vicchio, T. M., Cristani, M., et al. (2016). Oxidative stress and advanced glycation end products in Hashimoto’s thyroiditis. Thyroid, 26(4), 504–511. https://doi.org/10.1089/thy.2015.0436
61. Ruggeri, R. M., Cristani, M. T., Crupi, F. S., et al. (2022). Evaluation of paraoxonase activity and association with serum advanced glycation end products as reliable markers of oxidative stress in Hashimoto’s thyroiditis. Minerva Endocrinologica. https://doi.org/10.23736/S0391-1977.22.04702-8
62. Brady, D. M. (2012). Autoimmune disease: A modern epidemic? Molecular mimicry, the hygiene hypothesis, stealth infections, and other examples of disconnect between medical research and the practice of clinical medicine. Townsend Letter, (347), 45–50.
63. Merra, G., Noce, A., Marrone, G., et al. (2021). Influence of Mediterranean diet on human gut microbiota. Nutrients, 13(7), 2279. https://doi.org/10.3390/nu13072279
64. Requena, T., Martínez-Cuesta, M. C., & Peláez, C. (2018). Diet and microbiota linked in health and disease. Food Function, 9(2), 688–704. https://doi.org/10.1039/C7FO01599A
65. Rinninella, E., Cintoni, M., Raoul, P., et al. (2019). Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 11(10), 2393. https://doi.org/10.3390/nu11102393
66. Barrea, L., Muscogiuri, G., Frias-Toral, E., et al. (2021). Nutrition and immune system: From the Mediterranean diet to dietary supplements through the microbiota. Critical Reviews in Food Science and Nutrition, 61(18), 3066–3090. https://doi.org/10.1080/10408398.2020.1724137
67. Lerner, A., & Matthias, T. (2015). Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews, 14(6), 479–489. https://doi.org/10.1016/j.autrev.2015.01.003
68. Ruggeri, R. M., Giovinazzo, S., Barbalace, M. C., et al. (2021). Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid, 31(1), 96–105. https://doi.org/10.1089/thy.2020.0223
69. Keys, A., Menotti, A., Aravanis, C., et al. (1984). The seven countries study: 2289 deaths in 15 years. Preventive Medicine, 13(2), 141–154. https://doi.org/10.1016/0091-7435(84)90004-7
70. Angeloni, C., Malaguti, M., Barbalace, M. C., & Hrelia, S. (2017). Bioactivity of olive oil phenols in neuroprotection. International Journal of Molecular Sciences, 18(11), 2230. https://doi.org/10.3390/ijms18112230
71. Schwingshackl, L., Morze, J., & Hoffmann, G. (2020). Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. British Journal of Pharmacology, 177(6), 1241–1257. https://doi.org/10.1111/bph.14948
72. Kapoor, B., Kapoor, D., Gautam, S., et al. (2021). Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Current Nutrition Reports, 10(3), 232–242. https://doi.org/10.1007/s13668-021-00352-5
73. Calder, P. C. (2017). Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions, 45(5), 1105–1115. https://doi.org/10.1042/BST20160474
74. Jacobs, D. R., Gross, M. D., & Tapsell, L. C. (2009). Food synergy: An operational concept for understanding nutrition. The American Journal of Clinical Nutrition, 89(5), 1543S–1548S. https://doi.org/10.3945/ajcn.2009.26736Q
75. Hrelia, S., Barbalace, M. C., Cannavò, S., & Ruggeri, R. M. (2023). Commentary: Fish and the thyroid: A Janus Bifrons relationship caused by pollutants and the omega-3 polyunsaturated fatty acids. Frontiers in Endocrinology, 14, 1138245. https://doi.org/10.3389/fendo.2023.1138245
76. Di Daniele, N., Noce, A., Vidiri, M. F., et al. (2017). Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget, 8(47), 8947–8979. https://doi.org/10.18632/oncotarget.13557
77. Kesse-Guyot, E., Ahluwalia, N., Lassale, C., et al. (2013). Adherence to Mediterranean diet reduces the risk of metabolic syndrome: A 6-year prospective study. Nutrition, Metabolism and Cardiovascular Diseases, 23(7), 677–683. https://doi.org/10.1016/j.numecd.2012.03.001
78. Salas-Salvadó, J., Fernández-Ballart, J., Ros, E., et al. (2008). Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: One-year results of the PREDIMED randomized trial. Archives of Internal Medicine, 168(22), 2449–2458. https://doi.org/10.1001/archinte.168.22.2449
79. Romaguera, D., Guevara, M., Norat, T., et al. (2011). Mediterranean diet and type 2 diabetes risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study: The InterAct project. Diabetes Care, 34(8), 1913–1918. https://doi.org/10.2337/dc11-0294
80. Salas-Salvadó, J., Bulló, M., Babio, N., et al. (2011). Reduction in the incidence of type 2 diabetes with the Mediterranean diet: Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care, 34(1), 14–19. https://doi.org/10.2337/dc10-1839
81. Laudisio, D., Barrea, L., Muscogiuri, G., et al. (2020). Breast cancer prevention in premenopausal women: Role of the Mediterranean diet and its components. Nutrition Research Reviews, 33(1), 19–32. https://doi.org/10.1017/S0954422419000171
82. Maruca, A., Catalano, R., Bagetta, D., et al. (2019). The Mediterranean diet as source of bioactive compounds with multi-targeting anti-cancer profile. European Journal of Medicinal Chemistry, 181, 111579. https://doi.org/10.1016/j.ejmech.2019.06.061
83. de la Rubia Ortí, J. E., García-Pardo, M. P., Drehmer, E., et al. (2018). Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched Mediterranean diet: A pilot study. Journal of Alzheimer's Disease, 65, 577–587. https://doi.org/10.3233/JAD-180266
84. Gardener, H., & Caunca, M. R. (2018). Mediterranean diet in preventing neurodegenerative diseases. Current Nutrition Reports, 7, 10–20. https://doi.org/10.1007/s13668-018-0226-1
85. Santangelo, C., Vari, R., Scazzocchio, B., et al. (2018). Anti-inflammatory activity of extra virgin olive oil polyphenols: Which role in the prevention and treatment of immune-mediated inflammatory diseases? Endocrine, Metabolic & Immune Disorders Drug Targets, 18, 36–50. https://doi.org/10.2174/1871530317666170215120422
86. Li, X., Bi, X., Wang, S., et al. (2019). Therapeutic potential of ω-3 polyunsaturated fatty acids in human autoimmune diseases. Frontiers in Immunology, 10, 2241. https://doi.org/10.3389/fimmu.2019.02241
87. UNESCO. (n.d.). Mediterranean Diet. Retrieved from https://ich.unesco.org/en/RL/mediterranean-diet-00884
88. Ruggeri, R. M., Barbalace, M. C., Croce, L., Malaguti, M., Campennì, A., Rotondi, M., et al. (2023). Autoimmune thyroid disorders: The Mediterranean diet as a protective choice. Nutrients, 15(18), 3953. https://doi.org/10.3390/nu15183953
89. Abbott, R. D., Hashimoto, M., Kaname, T., et al. (2019). The autoimmune protocol diet modifies clinical and serologic features in Hashimoto’s thyroiditis: A 10-week pilot study. Cureus, 11(10), e4556. https://doi.org/10.7759/cureus.4556
90. Lee, Y. J., Cho, S. W., Lim, Y. H., Kim, B. N., Kim, J. I., Hong, Y. C., Park, Y. J., Shin, C. H., & Lee, Y. A. (2023). Relationship of iodine excess with thyroid function in 6-year-old children living in an iodine-replete area. Frontiers in Endocrinology, 14, 1099824. https://doi.org/10.3389/fendo.2023.1099824
91. Lisco, G., De Tullio, A., Triggiani, D., Zupo, R., Giagulli, V. A., De Pergola, G., et al. (2023). Iodine deficiency and iodine prophylaxis: An overview and update. Nutrients, 15, 1004. https://doi.org/10.3390/nu15041004
92. Yu, Z., Yu, Y., Wan, Y., Fan, J., Meng, H., Li, S., et al. (2021). Iodine intake level and incidence of thyroid disease in adults in Shaanxi province: A cross-sectional study. Annals of Translational Medicine, 9, 1567. https://doi.org/10.21037/atm-21-3373
93. Duntas, L. H. (2015). The role of iodine and selenium in autoimmune thyroiditis. Hormone and Metabolic Research, 47, 721–726. https://doi.org/10.1055/s-0035-1554713
94. Palaniappan, S., Shanmughavelu, L., Prasad, H. K., Subramaniam, S., Krishnamoorthy, N., & Lakkappa, L. (2017). Improving iodine nutritional status and increasing prevalence of autoimmune thyroiditis in children. Indian Journal of Endocrinology and Metabolism, 21, 85–89. https://doi.org/10.4103/2230-8210.196026
95. Yokomichi, H., Mochizuki, M., Kojima, R., Horiuchi, S., Ooka, T., Akiyama, Y., et al. (2022). Mother’s iodine exposure and infants’ hypothyroidism: The Japan Environment and Children’s Study (JECS). Endocrine Journal, 69, 9–21. https://doi.org/10.1507/endocrj.EJ21-0462
96. Danailova, Y., Velikova, T., Nikolaev, G., et al. (2022). Nutritional management of thyroiditis of Hashimoto. International Journal of Molecular Sciences, 23, 5144. https://doi.org/10.3390/ijms23095144
97. Ruggeri, R. M., Giovinazzo, S., Barbalace, M. C., Cristani, M., Alibrandi, A., Vicchio, T. M., et al. (2020). Influence of dietary habits on oxidative stress markers in Hashimoto’s thyroiditis. Thyroid. https://doi.org/10.1089/thy.2020.0299
98. Lacka, K., & Szeliga, A. (2015). Significance of selenium in thyroid physiology and pathology. Polski Merkuriusz Lekarski, 38, 348–353.
99. Szeliga, A., Czyżyk, A., Niedzielski, P., Mleczek, M., Maciejewski, A., Dorszewska, J., et al. (2018). Assessment of serum selenium concentration in patients with autoimmune thyroiditis in Poznań district. Polski Merkuriusz Lekarski, 45, 150–153.
100. Wu, Q., Wang, Y., Chen, P., Wei, J., Lv, H., Wang, S., et al. (2022). Increased incidence of Hashimoto thyroiditis in selenium deficiency: A prospective 6-year cohort study. Journal of Clinical Endocrinology & Metabolism, 107(11), e3603–e3611. https://doi.org/10.1210/clinem/dgac496
101. Cinemre, D. A., Cinemre, G. C., Serinkan, F. B., Degirmencioglu, S., Bahtiyar, N., & Aydemir, B. (2022). The role of selenium, selenoproteins and oxidative DNA damage in etiopathogenesis of Hashimoto thyroiditis. Journal of Elementology, 27(3), 755–764. https://doi.org/10.5601/jelem.2022.27.3.2507
102. Rostami, R., Nourooz-Zadeh, S., Mohammadi, A., Khalkhali, H. R., Ferns, G., & Nourooz-Zadeh, J. (2020). Serum selenium status and its interrelationship with serum biomarkers of thyroid function and antioxidant defense in Hashimoto’s thyroiditis. Antioxidants, 9(11), 1070. https://doi.org/10.3390/antiox9111070
103. Hu, Y., Feng, W., Chen, H., Shi, H., Jiang, L., Zheng, X., et al. (2021). Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto’s thyroiditis: A prospective randomized-controlled trial. Clinical and Translational Science, 14(4), 1390–1402. https://doi.org/10.1111/cts.13078
104. Wang, L. F., Sun, R. X., Li, C. F., & Wang, X. H. (2021). The effects of selenium supplementation on antibody titres in patients with Hashimoto’s thyroiditis. Endokrynologia Polska, 72(6), 666–667. https://doi.org/10.5603/EP.a2021.0076
105. Pirola, I., Gandossi, E., Agosti, B., Delbarba, A., & Cappelli, C. (2016). Selenium supplementation could restore euthyroidism in subclinical hypothyroid patients with autoimmune thyroiditis. Endokrynologia Polska, 67(6), 567–571.
106. Manevska, N., Stojanoski, S., & Makazlieva, T. (2019). Selenium treatment effect in auto-immune Hashimoto thyroiditis in Macedonian population. Journal of Endocrinology and Metabolism, 9(1), 22–28.
107. Kalicanin, D., Cvek, M., Baric, A., Skrabic, V., Punda, A., & Boraska Perica, V. (2023). Associations between vitamin D levels and dietary patterns in patients with Hashimoto’s thyroiditis. Frontiers in Nutrition, 10, 1188612. https://doi.org/10.3389/fnut.2023.1188612
108. Czarnywojtek, A., Florek, E., Pietrńczyk, K., Sawicka-Gutaj, N., Ruchała, M., Ronen, O., et al. (2023). The role of vitamin D in autoimmune thyroid diseases: A narrative review. Journal of Clinical Medicine, 12(5), 1452. https://doi.org/10.3390/jcm12051452
109. Siddiq, A., Naveed, A. K., Ghaffar, N., Aamir, M., & Ahmed, N. (2023). Association of pro-inflammatory cytokines with vitamin D in Hashimoto’s thyroid autoimmune disease. Medicina (Kaunas), 59(5), 853. https://doi.org/10.3390/medicina59050853
110. Maciejewski, A., Kowalczyk, M. J., Herman, W., Czyżyk, A., Kowalska, M., Żaba, R., et al. (2019). Vitamin D receptor gene polymorphisms and autoimmune thyroiditis: Are they associated with disease occurrence and its features? BioMed Research International, 2019, 8197580. https://doi.org/10.1155/2019/8197580
111. Chao, G., Zhu, Y., & Fang, L. (2020). Correlation between Hashimoto’s thyroiditis-related thyroid hormone levels and 25-hydroxyvitamin D. Frontiers in Endocrinology (Lausanne), 11, 4. https://doi.org/10.3389/fendo.2020.00004
112. Xu, J., Zhu, X. Y., Sun, H., Xu, X. Q., Xu, S. A., Suo, Y., et al. (2018). Low vitamin D levels are associated with cognitive impairment in patients with Hashimoto thyroiditis. BMC Endocrine Disorders, 18, 87. https://doi.org/10.1186/s12902-018-0281-z
113. Kim, D. (2016). Low vitamin D status is associated with hypothyroid Hashimoto’s thyroiditis. Hormones (Athens), 15(3), 385–393. https://doi.org/10.14310/horm.2002.1612
114. Gierach, M., & Junik, R. (2023). The role of vitamin D in women with Hashimoto’s thyroiditis. Endokrynologia Polska, 74(2), 176–180. https://doi.org/10.5603/EP.a2022.0122
115. Rola, R., Trusewicz, E., Bieńkowski, T., & Studzińska, S. (2021). Application of dried blood spots and serum samples for the determination of vitamin D metabolites in the group of healthy women and with Hashimoto’s thyroiditis. Chromatographia, 84, 695–701. https://doi.org/10.1007/s10337-021-04092-3
116. Anaraki, P. V., Aminorroaya, A., Amini, M., Momeni, F., Feizi, A., Iraj, B., et al. (2017). Effect of vitamin D deficiency treatment on thyroid function and autoimmunity markers in Hashimoto’s thyroiditis: A double-blind randomized placebo-controlled clinical trial. Journal of Research in Medical Sciences, 22, 103.
117. Yavuzer, H., Işık, S., Cengiz, M., Bolayırlı, İ. M., Döventaş, A., & Erdinçler, D. S. (2017). The relationship between vitamin D levels and receptor activator of nuclear factor ligand in Hashimoto’s thyroiditis. Medical Bulletin of Haseki, 55(3), 261–268.
118. Cvek, M., Kalicanin, D., Baric, A., Vuletic, M., Gunjaca, I., Lovric, V. T., et al. (2021). Vitamin D and Hashimoto’s thyroiditis: Observations from CROHT Biobank. Nutrients, 13(8), 2793. https://doi.org/10.3390/nu13082793
119. Botelho, I. M. B., Neto, A. M., Silva, C. A., Tambascia, M. A., Alegre, S. M., & Zantut-Wittmann, D. E. (2018). Vitamin D in Hashimoto’s thyroiditis and its relationship with thyroid function and inflammatory status. Endocrine Journal, 65(10), 1029–1037. https://doi.org/10.1507/endocrj.EJ18-0217
120. Filipova, L., Lazurova, Z., Fulop, P., & Lazurova, I. (2023). Vitamin D insufficiency is not associated with thyroid autoimmunity in Slovak women with Hashimoto’s disease. Bratislavské lekárske listy, 124(3), 182–186.
121. Maciejewski, A., Wójcicka, M., Roszak, M., Losy, J., & Łącka, K. (2015). Assessment of vitamin D level in autoimmune thyroiditis patients and a control group in the Polish population. Advances in Clinical and Experimental Medicine, 24(5), 801–806. https://doi.org/10.17219/acem/32677
122. Gasic, S., Smiljic, S., Milanovic, Z., Gasic, M., Ilic, S., & Bogosavlijevic, I., et al. (2023). Relationship between low vitamin D levels with Hashimoto thyroiditis. Srp Arh Celok Lek, 151(5–6), 296–301.
123. Kamińska, W., Wiśniewska, K., & Okręglicka, K., et al. (2023). Lifestyle intervention towards Mediterranean diet, physical activity adherence and anthropometric parameters in women with Hashimoto’s thyroiditis. Annals of Agricultural and Environmental Medicine, 30(1), 111–117. https://doi.org/10.26444/aaem/162393
124. Vaivode, I., Zake, T., Strele, I., et al. (2023). Stress-related immune response and selenium status in autoimmune thyroid disease patients. International Journal of Molecular Sciences, 24(3), 2440. https://doi.org/10.3390/ijms24032440
125. Hong, H., & Lee, J. (2022). Thyroid-stimulating hormone as a biomarker for stress after thyroid surgery: A prospective cohort study. Medical Science Monitor, 28, e937957. https://doi.org/10.12659/MSM.937957
Cyna, W., Wojciechowska, A., Szybiak-Skora, W., & Lacka, K. (2024). The impact of environmental factors on the development of autoimmune thyroiditis—Review. Biomedicines, 12(8), 1788. https://doi.org/10.3390/biomedicines12081788
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alicja Podolska, Agnieszka Woźniacka, Barbara Boba, Barbara Chojnacka, Julia Wątor, Jerzy Krzeszowiak, Aleksandra Ożga, Patrycja Kolano, Sylwia Bryksy, Tomasz Pulanecki

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 27
Number of citations: 0