RtPA for Submacular Hemorrhage
Mechanisms, Administration Routes, and Therapeutic Strategies
DOI:
https://doi.org/10.12775/QS.2025.43.61261Keywords
submacular hemorrhage, rtPA, intravitreal injection, subretinal injection, pneumatic displacement, anti-VEGFAbstract
Aims:
This review aims to evaluate the clinical utility of recombinant tissue plasminogen activator (rtPA) in submacular hemorrhage (SMH) by characterizing its mechanisms of action, comparing intravitreal versus subretinal delivery routes, assessing adjunctive strategies—including anti‐VEGF and pneumatic or hybrid techniques—and summarizing safety and complication profiles.
Methods:
We performed a systematic PubMed search (up to April 2025) using “rtPA” OR “recombinant tissue plasminogen activator” AND “submacular hemorrhage” OR “subretinal hemorrhage.” Publications from January 2019 onward were prioritized, except foundational mechanistic studies without a date limit. After screening titles and abstracts (n = 69) and reviewing full texts (n = 61), 29 studies met inclusion criteria (clinical adult SMH, rtPA dosing/route, and specified outcomes). Study types included one randomized controlled trial, one meta‐analysis, eight retrospective cohorts (≥ 25 eyes), twelve case series (5–24 eyes), and seven case reports.
Results:
Mechanistic data confirm fibrin‐selective plasminogen activation by rtPA. Intravitreal rtPA plus gas achieved clot displacement in 75–90% of eyes (mean LogMAR VA improvement from 1.2 to 0.8 at six months), while subretinal injection yielded ≥ 90% clearance and comparable or superior functional gains. Adjunctive anti‐VEGF and hybrid subretinal air + rtPA + anti‐VEGF approaches further improved outcomes. Overall adverse event rates ranged from 20% to 25%, including vitreous hemorrhage, retinal detachment, macular hole formation, and RPE tears.
Conclusions:
rtPA—administered intravitreally or subretinally—combined with pneumatic displacement and anti‐VEGF, provides effective SMH management. Notwithstanding encouraging results, complications and reliance on retrospective data highlight the need for standardized protocols and prospective trials such as TIGER.
References
1. Iannetta D, De Maria M, Bolletta E, Mastrofilippo V, Moramarco A, Fontana L. Subretinal injection of recombinant tissue plasminogen activator and gas tamponade to displace acute submacular haemorrhages secondary to age-related macular degeneration. Clin Ophthalmol. 2021;15:3649–3659. PMID: 34483653. doi:10.2147/OPTH.S324091
2. Casini G, Loiudice P, Menchini M, et al. Traumatic submacular hemorrhage: available treatment options and synthesis of the literature. Int J Retina Vitreous. 2019;5:48. PMID: 31890278. doi:10.1186/s40942-019-0200-0
3. Berthon C, Rousseau E, Chiambaretta F. Traitement des hématomes sous-maculaires par vitrectomie, injection sous-rétinienne de rtPA et tamponnement gazeux: une étude observationnelle rétrospective monocentrique [Treatment of submacular hematoma by vitrectomy, subretinal injection of rtPA and gaseous tamponade: a single-center retrospective observational study]. J Fr Ophtalmol. 2020;43(5):417-426. PMID: 32192752. doi:10.1016/j.jfo.2019.09.008
4. Boral SK, Agarwal D, Das A, Chakraborty D, Mandal S. Real-world outcomes and complications of different surgical approaches for significant submacular haemorrhages. Indian J Ophthalmol. 2023;71(5):2045-2052. PMID: 37203079. doi:10.4103/ijo.IJO_1987_22
5. Stanescu-Segall D, Balta F, Jackson TL. Submacular hemorrhage in neovascular age-related macular degeneration: a synthesis of the literature. Surv Ophthalmol. 2016;61(1):18-32. PMID: 26212151. doi:10.1016/j.survophthal.2015.04.004
6. Sánchez-Quirós J, Guemes-Villahoz N, Llorente-La-Orden C, Jimenez-Santos M, Lopez-Guajardo L. Displacement of a subretinal hemorrhage using intravitreous rtPA and SF6. J Fr Ophtalmol. 2021;44(9):1464-1467. PMID: 34353660. doi:10.1016/j.jfo.2021.02.010
7. Patikulsila D, Winaikosol P, Choovuthayakorn J, Watanachai N, Chaikitmongkol V, Kunavisarut P. Pars plana vitrectomy and subretinal tissue plasminogen activator for large exudative submacular hemorrhage: a case series. BMC Ophthalmol. 2022;22(1):411. PMID: 36303103. doi:10.1186/s12886-022-02639-w
8. He X, Cao W, Wang Z, Zhang N, Xu K, Yu L, Xing Y, Yang N. Efficacy evaluation of tissue plasminogen activator with anti-vascular endothelial growth factor drugs for submacular hemorrhage treatment: a meta-analysis. J Clin Med. 2023;12(3):1035. PMID: 36769682. doi:10.3390/jcm12031035
9. Avcı R, Mavi Yıldız A, Çınar E, Yılmaz S, Küçükerdönmez C, Akalp FD, Avcı E. Subretinal coapplication of tissue plasminogen activator and bevacizumab with concurrent pneumatic displacement for submacular hemorrhages secondary to neovascular age-related macular degeneration. Turk J Ophthalmol. 2021;51(1):38-44. PMID: 33631914. doi:10.4274/tjo.galenos.2020.72540
10. Szeto SKH, Tsang CW, Mohamed S, Lee GKY, Lok JKH, Hui VWK, Tsang KK, Chen LJ, Brelen M, Lai TYY. Displacement of submacular hemorrhage using subretinal cocktail injection versus pneumatic displacement: a real-world comparative study. Ophthalmologica. 2024;247(2):118-132. PMID: 38408445. doi:10.1159/000537953
11. Jeong S, Park DG, Sagong M. Management of a submacular hemorrhage secondary to age-related macular degeneration: a comparison of three treatment modalities. J Clin Med. 2020;9(10):3088. PMID: 32987903. doi:10.3390/jcm9103088
12. Gabrielle PH, Delyfer MN, Glacet-Bernard A, Conart JB, Uzzan J, Kodjikian L, Arndt C, Tadayoni R, Soudry-Faure A, Creuzot Garcher CP. Surgery, tissue plasminogen activator, antiangiogenic agents, and age-related macular degeneration study: a randomized controlled trial for submacular hemorrhage secondary to age-related macular degeneration. Ophthalmology. 2023;130(9):947-957. PMID: 37088447. doi:10.1016/j.ophtha.2023.04.014
13. Lim JH, Han YS, Lee SJ, Nam KY. Risk factors for breakthrough vitreous hemorrhage after intravitreal tissue plasminogen activator and gas injection for submacular hemorrhage associated with age-related macular degeneration. PLoS One. 2020;15(12):e0243201. PMID: 33270725. doi:10.1371/journal.pone.0243201
14. Ueda-Consolvo T, Takahashi S, Oiwake T, Nakamura T, Ishida M, Yanagisawa S, Hayashi A. Assessment of retinal pigment epithelium tears in eyes with submacular hemorrhage secondary to age-related macular degeneration. Sci Rep. 2025;15(1):3606. PMID: 39875573. doi:10.1038/s41598-025-88128-8
15. Tranos P, Tsiropoulos GN, Koronis S, Vakalis A, Asteriadis S, Stavrakas P. Comparison of subretinal versus intravitreal injection of recombinant tissue plasminogen activator with gas for submacular hemorrhage secondary to wet age-related macular degeneration: treatment outcomes and brief literature review. Int Ophthalmol. 2021;41(12):4037-4046. PMID: 34331185. doi:10.1007/s10792-021-01976-x
16. Matsunaga DR, Su D, Sioufi K, Obeid A, Wibbelsman T, Ho AC, Regillo CD. The timing of large submacular hemorrhage secondary to age-related macular degeneration relative to anti-VEGF therapy. Ophthalmol Retina. 2021;5(4):342-347. PMID: 32763426. doi:10.1016/j.oret.2020.07.028
17. Karamitsos A, Papastavrou V, Ivanova T, Cottrell D, Stannard K, Karachrysafi S, Cheristanidis S, Ziakas N, Papamitsou T, Hillier R. Management of acute submacular hemorrhage using intravitreal injection of tissue plasminogen activator and gas: a case series. SAGE Open Med Case Rep. 2020;8:2050313X20970337. PMID: 33240500. doi:10.1177/2050313X20970337
18. Kitagawa Y, Shimada H, Mori R, Tanaka K, Wakatsuki Y, Onoe H, Kaneko H, Machida Y, Nakashizuka H. One-year outcome of intravitreal tissue plasminogen activator, ranibizumab, and gas injections for submacular hemorrhage in polypoidal choroidal vasculopathy. J Clin Med. 2022;11(8):2175. PMID: 35456268. doi:10.3390/jcm11082175
19. Inoue N, Kato A, Araki T, Kimura T, Kinoshita T, Okamoto F, Murakami T, Mitamura Y, Sakamoto T, Miki A, Takamura Y, Matsubara H, Tsujinaka H, Gomi F, Yasukawa T. Visual prognosis of submacular hemorrhage secondary to age-related macular degeneration: a retrospective multicenter survey. PLoS One. 2022;17(7):e0271447. PMID: 35862313. doi:10.1371/journal.pone.0271447
20. Narala R, Bodnar Z, Mruthyunjaya P. Displacement of submacular hemorrhage with intravitreal tissue plasminogen activator following 27 gauge transvitreal fine needle aspiration biopsy for choroidal melanoma. Am J Ophthalmol Case Rep. 2022;25:101320. PMID: 35243131. doi:10.1016/j.ajoc.2022.101320
21. Corbelli E, Iuliano L, Fogliato G, Bandello F, Codenotti M. Silicone oil-induced displacement of subretinal hemorrhage in age-related macular degeneration. Eur J Ophthalmol. 2021;31(3):1483-1486. PMID: 32811180. doi:10.1177/1120672120952349
22. Nourinia R, Behnaz N, Hassanpour H, Karjoo Z, Hassanpour K. Macular hole and submacular hemorrhage secondary to retinal arterial macroaneurysm – successfully treated with a novel surgical technique. GMS Ophthalmol Cases. 2020;10:Doc31. PMID: 32884885. doi:10.3205/oc000158
23. Veritti D, Sarao V, Martinuzzi D, Menzio S, Lanzetta P. Submacular hemorrhage during neovascular age-related macular degeneration: a meta-analysis and meta-regression on the use of tPA and anti-VEGFs. Ophthalmologica. 2024;247(3):191–202. PMID: 38555635. doi:10.1159/000537939
24. Miyazato M, Maruyama-Inoue M, Tanaka S, Inoue T, Yanagi Y, Kadonosono K. Comparison between intravitreal anti-vascular endothelial growth factor monotherapy and vitrectomy in age-related macular degeneration with large submacular hemorrhages. J Clin Med. 2025;14(5):1477. PMID: 40094950. doi:10.3390/jcm14051477
25. Ogata M, Oh H, Nakata A, Doi A, Nakayama H, Hasegawa M, Hirose M. Displacement of submacular hemorrhage secondary to age-related macular degeneration with subretinal injection of air and tissue plasminogen activator. Sci Rep. 2022;12(1):22139. PMID: 36550175. doi:10.1038/s41598-022-26289-6
26. Islam Y, Khurshid SG. Tissue plasminogen activator toxicity after submacular hemorrhage repair. J Ophthalmic Vis Res. 2021;16(3):507-510. PMID: 34394878. doi:10.18502/jovr.v16i3.9445
27. Ali Said Y, Dewilde E, Stalmans P. Visual outcome after vitrectomy with subretinal tPA injection to treat submacular hemorrhage secondary to age-related macular degeneration or macroaneurysm. J Ophthalmol. 2021;2021:3160963. PMID: 35003789. doi:10.1155/2021/3160963
28. Simunovic MP, Prime ZJ, Chow RC, Shao EH, Madanat Z, Osaadon P, Yeo TH, Oo KT, Too LK. The 1-step versus 2-step subretinal injection trial (1,2-SIT)—a randomized controlled trial to compare drug reflux following subretinal injection. Am J Ophthalmol. 2025;274:149-162. PMID: 40020980. doi:10.1016/j.ajo.2025.02.018
29. Matsumoto R, Kakinoki M, Sawada O, Obata S, Saishin Y, Ohji M. Incidence of macular hole in patients undergoing pars plana vitrectomy for submacular hemorrhage. PLoS One. 2025;20(2):e0319266. PMID: 40014591. doi:10.1371/journal.pone.0319266
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bartosz Zabrzeński, Jessika Schendzielorz, Szczepan Pośpiech, Jakub Prosowski, Piotr Serwicki, Michał Piotrowski, Ewa Chodkowska, Kinga Bielas, Aleksandra Mucha, Aleksander Szeps

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 4
Number of citations: 0