Nutritional interventions in prevention of chronic diseases - phytochemicals as sirtuin activators and their role in the regulation of metabolic processes
DOI:
https://doi.org/10.12775/QS.2025.43.61254Keywords
phytochemicals, sirtuin, chronic diseases, nutritionAbstract
Introduction: Diet plays a crucial role in preserving health and enhancing overall wellness. Dietary phytochemicals are naturally occurring substances found in foods that may be beneficial in preventing chronic conditions. Sirtuins (SIRTs) are part of a group known as class III NAD-dependent histone deacetylases, which are important in key cellular functions. They participate in multiple processes, such as the balance between oxidants and antioxidants, controlling inflammation, insulin sensitivity, fatty acid metabolism, and aging. The involvement of sirtuin activation through the action of phytochemicals contained in natural products has been described as potentially beneficial in many chronic diseases such as obesity, type 2 diabetes and cardiovascular diseases. In this review, we discussed how selected phytochemicals influence the activation of sirtuins and the impact of their intake on the development and progression of chronic illnesses.
Materials and Methods: A comprehensive literature analysis was conducted using information found in the PubMed database. The research concerned the relationships between phytochemicals, the activation of sirtuins, and the onset of chronic diseases.
Conclusions: Studies show that activation of sirtuins may have a beneficial effect on the development of chronic diseases and should be the subject of further research. Nutritional interventions based on the use of natural products remain the subject of research, and developments in this field have the potential to bring new solutions in the prevention or treatment of chronic diseases.
References
1. Gualtieri P, Marchetti M, Frank G, Smeriglio A, Trombetta D, Colica C, Cianci R, De Lorenzo A, Di Renzo L. Antioxidant-Enriched Diet on Oxidative Stress and Inflammation Gene Expression: A Randomized Controlled Trial. Genes (Basel). 2023 Jan 13;14(1):206. doi: 10.3390/genes14010206. PMID: 36672947; PMCID: PMC9859217.
2. Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere. 2021 May;271:129499. doi: 10.1016/j.chemosphere.2020.129499. Epub 2021 Jan 4. PMID: 33445014.
3. Caruso C, Accardi G, Aiello A, Candore G. Hormetic Effects of Phytochemicals with Anti-Ageing Properties. Subcell Biochem. 2024;107:205-215. doi: 10.1007/978-3-031-66768-8_10. PMID: 39693026.
4. Li Y, Zhang J, Zhou H, Du Z. Anticancer effects of natural phytochemicals in anaplastic thyroid cancer (Review). Oncol Rep. 2022 Sep;48(3):156. doi: 10.3892/or.2022.8368. Epub 2022 Jul 20. PMID: 35856443; PMCID: PMC9471558.
5. Zhu F, Du B, Xu B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit Rev Food Sci Nutr. 2018 May 24;58(8):1260-1270. doi: 10.1080/10408398.2016.1251390. Epub 2017 Jun 12. PMID: 28605204.
6. Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol. 2020 Aug 7;11:1225. doi: 10.3389/fphar.2020.01225. PMID: 32848804; PMCID: PMC7426493.
7. Zhejun Ji, Guang-Hui Liu, Jing Qu, Mitochondrial sirtuins, metabolism, and aging, Journal of Genetics and Genomics, Volume 49, Issue 4, 2022, Pages 287-298, ISSN 1673-852 https://doi.org/10.1016/j.jgg.2021.11.005.
8. Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol. 2023 Jul 6;14:1186231. doi: 10.3389/fimmu.2023.1186231. PMID: 37483618; PMCID: PMC10357840.
9. Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019 Jan;52(1):24-34. doi: 10.5483/BMBRep.2019.52.1.290. PMID: 30526767; PMCID: PMC6386230.
10. Singh, C.K.; Chhabra, G.; Ndiaye, M.A.; Garcia-Peterson, L.M.; Mack, N.J.; Ahmad, N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid. Redox Signal. 2018, 28, 643–661.
11. Lee H, Yoon H. Mitochondrial sirtuins: Energy dynamics and cancer metabolism. Mol Cells. 2024 Feb;47(2):100029. doi: 10.1016/j.mocell.2024.100029. Epub 2024 Feb 6. PMID: 38331199; PMCID: PMC10960136.
12. Brenna Osborne, Nicholas L Bentley, Magdalene K Montgomery and Nigel Turner, The role of mitochondrial sirtuins in health and disease, Free Radical Biology and Medicine, http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.197
13. Raghu S, Prabhashankar AB, Shivanaiah B, Tripathi E, Sundaresan NR. Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. Subcell Biochem. 2022;100:337-360. doi: 10.1007/978-3-031-07634-3_10. PMID: 36301499.
14. Li XT, Zhang YP, Zhang MW, Zhang ZZ, Zhong JC. Sirtuin 7 serves as a promising therapeutic target for cardiorenal diseases. Eur J Pharmacol. 2022 Jun 15;925:174977. doi: 10.1016/j.ejphar.2022.174977. Epub 2022 May 2. PMID: 35513019.
15. Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol. 2019 Feb 28;66(1):13-21. doi: 10.18388/abp.2018_2749. PMID: 30816367.
16. Santos-Buelga, C.; González-Manzano, S.; González-Paramás, A.M.Wine, Polyphenols, and Mediterranean Diets. What Else Is There to Say? Molecules 2021, 26, 5537. https://doi.org/10.3390/molecules26185537
17. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY). 2017 Jun 12;9(6):1477-1536. doi: 10.18632/aging.101250. PMID: 28611316; PMCID: PMC5509453.
18. Xia N, Förstermann U, Li H. Resveratrol and endothelial nitric oxide. Molecules. 2014 Oct 9;19(10):16102-21. doi: 10.3390/molecules191016102. PMID: 25302702; PMCID: PMC6270738.
19. Zendedel, E., Butler, A. E., Atkin, S. L., & Sahebkar, A. (2018). Impact of curcumin on sirtuins: A review. Journal of Cellular Biochemistry. doi:10.1002/jcb.27371
20. Serafini MM, Catanzaro M, Fagiani F, Simoni E, Caporaso R, Dacrema M, Romanoni I, Govoni S, Racchi M, Daglia M, Rosini M and Lanni C (2020) Modulation of Keap1/Nrf2/ARE Signaling Pathway by Curcuma- and Garlic-Derived Hybrids. Front. Pharmacol. 10:1597. doi: 10.3389/fphar.2019.01597
21. Ejaz, A., Wu, D., Kwan, P., & Meydani, M. (2009). Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesity in C57/BL Mice. The Journal of Nutrition, 139(5), 919–925. doi:10.3945/jn.108.100966
22. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y. Quercetin, Inflammation and Immunity. Nutrients. 2016 Mar 15;8(3):167. doi: 10.3390/nu8030167. PMID: 26999194; PMCID: PMC4808895.
23. Shen P, Lin W, Ba X, Huang Y, Chen Z, Han L, Qin K, Huang Y, Tu S. Quercetin-mediated SIRT1 activation attenuates collagen-induced mice arthritis. J Ethnopharmacol. 2021 Oct 28;279:114213. doi: 10.1016/j.jep.2021.114213. Epub 2021 May 20. PMID: 34023442.
24. R.V. Patel, B.M. Mistry, S.K. Shinde, R. Syed, V. Singh, H.-S. Shin, Therapeutic potential of quercetin as a cardiovascular agent, European Journal of Medicinal Chemistry (2018), doi: 10.1016/j.ejmech.2018.06.053.
25. Oboh, G., Ademosun, A. O., and Ogunsuyi, O. B. (2016). Quercetin and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 929, 377–387. doi: 10.1007/978-3-319- 41342-6_17
26. Hung, C. H., Chan, S. H., Chu, P. M., and Tsai, K. L. (2015). Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol. Nutr. Food Res. 59 (10), 1905–1917. doi: 10.1002/ mnfr.201500144
27. Tang, J., Lu, L., Liu, Y., Ma, J., Yang, L., Li, L., et al. (2019). Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo Iside et al. Natural SIRT1 Activators Frontiers in Pharmacology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 1225 study via SIRT1/PGC-1alpha signaling. J. Cell Biochem. 120 (6), 9747–9757. doi: 10.1002/jcb.28255
28. Sechi, M., Lall, R. K., Afolabi, S. O., Singh, A., Joshi, D. C., Chiu, S. Y., et al. (2018). Fisetin targets YB-1/RSK axis independent of its effect on ERK signaling: insights from in vitro and in vivo melanoma models. Sci. Rep. 8 (1), 15726. doi: 10.1038/s41598-018-33879-w
29. Singh, S., Garg, G., Singh, A. K., Tripathi, S. S., and Rizvi, S. I. (2019). Fisetin, a potential caloric restriction mimetic, modulates ionic homeostasis in senescence induced and naturally aged rats. Arch. Physiol. Biochem., 1–8. doi: 10.1080/13813455.2019.1662452
30. Chapel JM, Ritchey MD, Zhang D, Wang G. Prevalence and Medical Costs of Chronic Diseases Among Adult Medicaid Beneficiaries. Am J Prev Med. 2017 Dec;53(6S2):S143-S154. doi: 10.1016/j.amepre.2017.07.019. PMID: 29153115; PMCID: PMC5798200.
31. Francisco PMSB, Assumpção D, Bacurau AGM, Neri AL, Malta DC, Borim FSA. Prevalence of chronic diseases in octogenarians: data from the National Health Survey 2019. Cien Saude Colet. 2022 Jul;27(7):2655-2665. Portuguese, English. doi: 10.1590/1413-81232022277.22482021. Epub 2021 Dec 23. PMID: 35730836.
32. Ciumărnean L, Milaciu MV, Negrean V, Orășan OH, Vesa SC, Sălăgean O, Iluţ S, Vlaicu SI. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. Int J Environ Res Public Health. 2021 Dec 25;19(1):207. doi: 10.3390/ijerph19010207. PMID: 35010467; PMCID: PMC8751147.
33. Petersen KS, Kris-Etherton PM. Diet Quality Assessment and the Relationship between Diet Quality and Cardiovascular Disease Risk. Nutrients. 2021 Nov 28;13(12):4305. doi: 10.3390/nu13124305. PMID: 34959857; PMCID: PMC8706326.
34. Sanz MN, Grimbert L, Moulin M, Gressette M, Rucker-Martin C, Lemaire C, Mericskay M, Veksler V, Ventura-Clapier R, Garnier A, Piquereau J. Inducible Cardiac-Specific Deletion of Sirt1 in Male Mice Reveals Progressive Cardiac Dysfunction and Sensitization of the Heart to Pressure Overload. Int J Mol Sci. 2019 Oct 10;20(20):5005. doi: 10.3390/ijms20205005. PMID: 31658614; PMCID: PMC6834316.
35. Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol. 2014 Jun 15;306(12):H1602-9. doi: 10.1152/ajpheart.00027.2014. Epub 2014 Apr 18. PMID: 24748594; PMCID: PMC4059981.
36. Yamamura S, Izumiya Y, Araki S, Nakamura T, Kimura Y, Hanatani S, Yamada T, Ishida T, Yamamoto M, Onoue Y, Arima Y, Yamamoto E, Sunagawa Y, Yoshizawa T, Nakagata N, Bober E, Braun T, Sakamoto K, Kaikita K, Morimoto T, Yamagata K, Tsujita K. Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting With and Deacetylating GATA4. Hypertension. 2020 Jan;75(1):98-108. doi: 10.1161/HYPERTENSIONAHA.119.13357. Epub 2019 Nov 18. PMID: 31735083.
37. T. Kawashima, Y. Inuzuka, J. Okuda et al., “Constitutive SIRT1 overexpression impairs mitochondria and reduces cardiac function in mice,” Journal of Molecular and Cellular Cardiology, vol. 51, no. 6, pp. 1026–1036, 2011.
38. Niria Treviño-Saldaña, Gerardo García-Rivas, "Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals", Oxidative Medicine and Cellular Longevity, vol. 2017, Article ID 1750306, 16 pages, 2017. https://doi.org/10.1155/2017/1750306
39. Stöhr, R., Mavilio, M., Marino, A. et al. ITCH modulates SIRT6 and SREBP2 to influence lipid metabolism and atherosclerosis in ApoE null mice. Sci Rep 5, 9023 (2015). https://doi.org/10.1038/srep09023
40. Gorenne I, Kumar S, Gray K, Figg N, Yu H, Mercer J, Bennett M. Vascular smooth muscle cell sirtuin 1 protects against DNA damage and inhibits atherosclerosis. Circulation. 2013 Jan 22;127(3):386-96. doi: 10.1161/CIRCULATIONAHA.112.124404. Epub 2012 Dec 7. PMID: 23224247.
41. Zhang ZQ, Ren SC, Tan Y, Li ZZ, Tang X, Wang TT, Hao DL, Zhao X, Chen HZ, Liu DP. Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice. Sci Rep. 2016 Apr 5;6:23912. doi: 10.1038/srep23912. PMID: 27045575; PMCID: PMC4820703.
42. Hoseini A, Namazi G, Farrokhian A, Reiner Ž, Aghadavod E, Bahmani F, Asemi Z. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct. 2019 Sep 1;10(9):6042-6051. doi: 10.1039/c9fo01075k. Epub 2019 Sep 5. PMID: 31486447.
43. Saboori S, Koohdani F, Nematipour E, Rad EY, Saboor-Yaraghi AA, Javanbakht MH, Eshraghian MR, Ramezani A, Djalali M, Beneficial Effects of Omega 3 and Vitamin E Co-Administration on Gene Expression of SIRT1 and PGC1α and serum antioxidant enzymes in patients with Coronary Artery Disease, Nutrition, Metabolism and Cardiovascular Diseases (2016), doi: 10.1016/j.numecd.2015.11.013.
44. Mohammed MS, Sendra S, Lloret J, Bosch I. Systems and WBANs for Controlling Obesity. J Healthc Eng. 2018 Feb 1;2018:1564748. doi: 10.1155/2018/1564748. PMID: 29599941; PMCID: PMC5823412.
45. Barbagallo, F.; La Vignera, S.; Cannarella, R.; Mongioì, L.M.; Garofalo, V.; Leanza, C.; Marino, M.; Calogero, A.E.; Condorelli, R.A. Obesity and Male Reproduction: Do Sirtuins Play a Role? Int. J. Mol. Sci. 2022, 23, 973. https://doi.org/10.3390/ijms23020973
46. Martínez-Jiménez, V., Cortez-Espinosa, N., Rodríguez-Varela, E., Vega-Cárdenas, M., Briones-Espinoza, M., Ruíz-Rodríguez, V. M., … Portales-Pérez, D. P. (2018). Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. doi:10.1016/j.dsx.2018.11.011
47. Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem. 2011 Jun 24;286(25):22227-34. doi: 10.1074/jbc.M111.228874. Epub 2011 May 3. PMID: 21540183; PMCID: PMC3121368.
48. Rebello CJ, Greenway FL. Obesity medications in development. Expert Opin Investig Drugs. 2020 Jan;29(1):63-71. doi: 10.1080/13543784.2020.1705277. Epub 2019 Dec 19. PMID: 31847611; PMCID: PMC6990416.
49. Tabrizi, R., Tamtaji, O. R., Lankarani, K. B., Akbari, M., Dadgostar, E., Dabbaghmanesh, M. H., … Asemi, Z. (2018). The effects of resveratrol intake on weight loss: a systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 1–16. doi:10.1080/10408398.2018.1529654
50. Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin KM, Fulda S, Wabitsch M. Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr. 2010 Jul;92(1):5-15. doi: 10.3945/ajcn.2009.28435. Epub 2010 May 12. PMID: 20463039.
51. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–6.
52. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten S, Moonen-Kornips E, Hesselink MKC, Kunz I, Schrauwen-Hinderling VB, Blaak E, Auwerx J, Schrauwen P. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011 Nov 2;14(5):612-22. doi: 10.1016/j.cmet.2011.10.002. PMID: 22055504; PMCID: PMC3880862.
53. Goh, K. P., Lee, H. Y., Lau, D. P., Supaat, W., Chan, Y. H., & Koh, A. F. Y. (2014). Effects of Resveratrol in Patients with Type 2 Diabetes Mellitus on Skeletal Muscle SIRT1 Expression and Energy Expenditure. International Journal of Sport Nutrition and Exercise Metabolism, 24(1), 2–13. doi:10.1123/ijsnem.2013-0045
54. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014 Jan;25(1):1-18. doi: 10.1016/j.jnutbio.2013.09.001. PMID: 24314860; PMCID: PMC3926750.
55. Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016 Mar 11;48(3):e219. doi: 10.1038/emm.2016.6. PMID: 26964835; PMCID: PMC4892884.
56. Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget. 2017 Jan 3;8(1):1845-1859. doi: 10.18632/oncotarget.12157. PMID: 27659520; PMCID: PMC5352102.
57. Li X, Kazgan N. Mammalian sirtuins and energy metabolism. Int J Biol Sci. 2011;7(5):575-87. doi: 10.7150/ijbs.7.575. Epub 2011 May 9. PMID: 21614150; PMCID: PMC3101526.
58. Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, Gu W, Accili D. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008 Oct;8(4):333-41. doi: 10.1016/j.cmet.2008.08.014. PMID: 18840364; PMCID: PMC3222897.
59. Yamagata K, Yoshizawa T. Transcriptional Regulation of Metabolism by SIRT1 and SIRT7. Int Rev Cell Mol Biol. 2018;335:143-166. doi: 10.1016/bs.ircmb.2017.07.009. Epub 2017 Aug 30. PMID: 29305011.
60. Biason-Lauber A, Böni-Schnetzler M, Hubbard BP, Bouzakri K, Brunner A, Cavelti-Weder C, Keller C, Meyer-Böni M, Meier DT, Brorsson C, Timper K, Leibowitz G, Patrignani A, Bruggmann R, Boily G, Zulewski H, Geier A, Cermak JM, Elliott P, Ellis JL, Westphal C, Knobel U, Eloranta JJ, Kerr-Conte J, Pattou F, Konrad D, Matter CM, Fontana A, Rogler G, Schlapbach R, Regairaz C, Carballido JM, Glaser B, McBurney MW, Pociot F, Sinclair DA, Donath MY. Identification of a SIRT1 mutation in a family with type 1 diabetes. Cell Metab. 2013 Mar 5;17(3):448-455. doi: 10.1016/j.cmet.2013.02.001. PMID: 23473037; PMCID: PMC3746172.
61. Kitada, M., & Koya, D. (2013). SIRT1 in Type 2 Diabetes: Mechanisms and Therapeutic Potential. Diabetes & Metabolism Journal, 37(5), 315. doi:10.4093/dmj.2013.37.5.315
62. Zaganjor, E., Vyas, S., & Haigis, M. C. (2017). SIRT4 Is a Regulator of Insulin Secretion. Cell Chemical Biology, 24(6), 656–658. doi:10.1016/j.chembiol.2017.06.002
63. Huynh FK, Hu X, Lin Z, Johnson JD, Hirschey MD. Loss of sirtuin 4 leads to elevated glucose- and leucine-stimulated insulin levels and accelerated age-induced insulin resistance in multiple murine genetic backgrounds. J Inherit Metab Dis. 2018 Jan;41(1):59-72. doi: 10.1007/s10545-017-0069-8. Epub 2017 Jul 19. PMID: 28726069; PMCID: PMC5775063.
64. Aghasi M, Koohdani F, Qorbani M, Nasli-Esfahani E, Ghazi-Zahedi S, Khoshamal H, Keshavarz A, Sotoudeh G. Beneficial effects of green cardamom on serum SIRT1, glycemic indices and triglyceride levels in patients with type 2 diabetes mellitus: a randomized double-blind placebo controlled clinical trial. J Sci Food Agric. 2019 Jun;99(8):3933-3940. doi: 10.1002/jsfa.9617. Epub 2019 Mar 18. PMID: 30701554.
65. Nikooyeh B, Hollis BW, Neyestani TR. The effect of daily intake of vitamin D-fortified yogurt drink, with and without added calcium, on serum adiponectin and sirtuins 1 and 6 in adult subjects with type 2 diabetes. Nutr Diabetes. 2021 Jul 30;11(1):26. doi: 10.1038/s41387-021-00168-x. PMID: 34389701; PMCID: PMC8363611.
66. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022 Feb 22;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052. Epub 2022 Jan 26. Erratum in: Circulation. 2022 Sep 6;146(10):e141. PMID: 35078371.
67. Benjamin Caballero, Humans against Obesity: Who Will Win?, Advances in Nutrition, Volume 10, Issue suppl_1, January 2019, Pages S4–S9, https://doi.org/10.1093/advances/nmy055
68. Tinajero MG, Malik VS. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol Metab Clin North Am. 2021 Sep;50(3):337-355. doi: 10.1016/j.ecl.2021.05.013. PMID: 34399949.
69. Mansur AP, Roggerio A, Goes MFS, Avakian SD, Leal DP, Maranhão RC, Strunz CMC. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: A randomized trial. Int J Cardiol. 2017 Jan 15;227:788-794. doi: 10.1016/j.ijcard.2016.10.058. Epub 2016 Oct 27. PMID: 28029409.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Klaudia Michalak, Kacper Janowski, Tomasz Poboży, Emilia Piotrowicz, Paweł Jan Kuna, Alicja Katarzyna Chojniak, Dagmara Neska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 16
Number of citations: 0