Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Sirtuins as multifunctional regulators: Role in the pathogenesis of metabolic, inflammatory and neurodegenerative diseases and the effect of physical activity on their activity
  • Home
  • /
  • Sirtuins as multifunctional regulators: Role in the pathogenesis of metabolic, inflammatory and neurodegenerative diseases and the effect of physical activity on their activity
  1. Home /
  2. Archives /
  3. Vol. 42 (2025) /
  4. Medical Sciences

Sirtuins as multifunctional regulators: Role in the pathogenesis of metabolic, inflammatory and neurodegenerative diseases and the effect of physical activity on their activity

Authors

  • Wojciech Matuszyński Zachodniopomorskie Centrum Onkologii https://orcid.org/0009-0007-0252-9337
  • Maria Matuszyńska Samodzielny Publiczny Wojewódzki Szpital Zespolony w Szczecinie. Szczecin 71-455, ul. Arkońska 4 https://orcid.org/0000-0003-2170-6486
  • Patrycja Nowicka Samodzielny Publiczny Wojewódzki Szpital Zespolony w Szczecinie Szczecin 71-455, ul. Arkońska 4 https://orcid.org/0000-0002-3565-419X
  • Karolina Jezierska Centrum Diagnostyki Znamion, Poznań 61-821, ul. Ogrodowa 10/1 https://orcid.org/0009-0005-5236-9285
  • Weronika Kalinowska Wojewódzki Szpital Zespolomy im. Jędrzeja Śniadeckiego, Białystok 15-278, ul. Marii Skłodowskiej-Curie 26 https://orcid.org/0009-0005-4630-467X
  • Mateusz Gural Uniwersytecki Szpital Kliniczny nr 1 im. prof. Tadeusza Sokołowskiego PUM w Szczecinie, 71-252 Szczecin, ul. Unii Lubelskiej 1 https://orcid.org/0009-0000-2601-4126

DOI:

https://doi.org/10.12775/QS.2025.42.60514

Keywords

Exercise and sirtuins, Sirtuins, Multifunctional regulators, Physical activity, Oxidative stress, Mitochondrial function, Gene regulation, Neurodegenerative diseases, Metabolic diseases, Inflammatory diseases, Sport, NAD+ metabolism

Abstract

Sirtuins, a family of NAD+-dependent deacetylases and ADP-ribosyltransferases, regulate cellular homeostasis and adaptive responses to environmental changes. Comprising seven isoforms (SIRT1–SIRT7), these enzymes have diverse functions, including gene expression regulation, mitochondrial function, oxidative stress response, and cellular aging. Dysregulated sirtuin activity is implicated in metabolic, inflammatory, and neurodegenerative diseases such as obesity, type 2 diabetes, cardiovascular disease, Alzheimer’s, and Parkinson’s. Sirtuins modulate metabolic pathways by influencing glucose and lipid metabolism, enhancing insulin sensitivity, and promoting mitochondrial biogenesis. Their role in reducing inflammation and oxidative stress positions them as potential therapeutic targets for chronic conditions and age-related disorders. Compounds like resveratrol and lifestyle factors such as physical activity are potent sirtuin activators, highlighting their therapeutic potential.

Physical activity, a cornerstone of non-pharmacological health interventions, increases NAD+ availability, upregulating sirtuin activity. This effect underscores exercise as a modulator of sirtuin pathways, with protective effects against chronic diseases. Studies show that regular physical activity can enhance sirtuin function, improving metabolic health, reducing oxidative damage, and providing neuroprotection. This review offers an overview of sirtuin biology, their role in disease pathogenesis, and the molecular mechanisms underlying the beneficial effects of exercise on sirtuin activity.

References

Haigis MC, Sinclair DA. Mammalian sirtuins: Biological insights and disease relevance. Annu Rev Pathol. 2010;5:253-295.

Imai S, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795-800.

Radak Z, et al. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2013;12(1):75-89.

Kauppinen TM, et al. SIRT1 in inflammation and metabolic disease. Physiol Rev. 2013;93:605-621.

Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496-509. doi:10.1056/NEJMra0804595.

Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445(7130):866-873. doi:10.1038/nature05663.

Boehncke WH, Schön MP. Psoriasis. Lancet. 2015;386(9997):983-994. doi:10.1016/S0140-6736(14)61909-7.

Vachharajani VT, Liu T, Wang X, Hoth JJ, Yoza BK, McCall CE. Sirtuins Link Inflammation and Metabolism. J Immunol Res. 2016;2016:8167273. doi:10.1155/2016/8167273.

Blander G, Bhimavarapu A, Mammone T, et al. SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol. 2009;129:41–49. doi:10.1038/jid.2008.179. 14.Wu Z, Uchi H, Morino-Koga S, et al. Resveratrol inhibition of human keratinocyte proliferation via SIRT1/ARNT/ERK dependent downre- gulation of aquaporin 3. J Dermatol Sci. 2014;75:16–23. doi:10. 1016/j.jdermsci.2014.03.004.

Zhu X, Liu Q, Wang M, et al. (2011) Activation of Sirt1 by resveratrol inhibits TNF-α induced inflam- mation in fibroblasts. PLoS One 6: e27081.

Wang Y, Huo J, Zhang D, et al. Chemerin/ChemR23 axis triggers an inflammatory response in keratinocytes through ROS-sirt1-NF-κB signaling. J Cell Biochem. 2019;120:6459–6470. doi:10.1002/jcb. 27936.

Van Gool FV, Smedt TD, Alt FW, et al. (2009) Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nature Medicine 15: 206–210.

Fan X, Yan K, Meng Q, Sun R, Yang X, Yuan D, et al. Abnormal expression of SIRTs in psoriasis: decreased expression of SIRT 1-5 and increased expression of SIRT 6 and 7. Int J Mol Med 2019;44:157–71.

D'Amico F, Costantino G, Salvatorelli L, et al. Inverse correlation between the expression of AMPK/SIRT1 and NAMPT in psoriatic skin: A pilot study. Adv Med Sci. 2022;67(2):262-268. doi:10.1016/j.advms.2022.07.001.

Krueger JG, Suárez-Fariñas M, Cueto I, et al. (2015) A randomized, placebo-controlled study of SRT2104, a SIRT1 activator, in patients with moderate to severe psoriasis. PLoS One 10(11): e0142081.

Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. Published 2018 Apr 27. doi:10.1038/s41413-018-0016-9.

Poniewierska-Baran A, Bochniak O, Warias P, Pawlik A. Role of Sirtuins in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci. 2023;24(2):1532. Published 2023 Jan 12. doi:10.3390/ijms24021532.

Wasserman AM. Diagnosis and management of rheumatoid arthritis. Am Fam Physician. 2011;84(11):1245-1252.

Szumilas K, Szumilas P, Słuczanowska-Głąbowska S, Zgutka K, Pawlik A. Role of Adiponectin in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci. 2020;21(21):8265. Published 2020 Nov 4. doi:10.3390/ijms21218265.

Shen P, Deng X, Chen Z, et al. SIRT1: A Potential Therapeutic Target in Autoimmune Diseases. Front Immunol. 2021;12:779177. Published 2021 Nov 23. doi:10.3389/fimmu.2021.779177.

Hussain MZ, Haris MS, Khan MS, Mahjabeen I. Role of mitochondrial sirtuins in rheumatoid arthritis. Biochem Biophys Res Commun. 2021;584:60-65. doi:10.1016/j.bbrc.2021.11.016.

Li G, Xia Z, Liu Y, et al. SIRT1 inhibits rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and inflammatory response via suppressing NF-κB pathway. Biosci Rep. 2018;38(3):BSR20180541. Published 2018 Jun 21. doi:10.1042/BSR20180541.

Deng Z, Wang Z, Jin J, et al. SIRT1 protects osteoblasts against particle-induced inflammatory responses and apoptosis in aseptic prosthesis loosening. Acta Biomater. 2017;49:541-554. doi:10.1016/j.actbio.2016.11.051.

Stein S, Schäfer N, Breitenstein A, et al. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice. Aging (Albany NY). 2010;2(6):353-360. doi:10.18632/aging.100162.

Jayasena, T., Poljak, A., Braidy, N. et al. Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System. Sci Rep 6, 35391 (2016). https://doi.org/10.1038/srep35391.

Ji S, Doucette JR, Nazarali AJ. Sirt2 is a novel in vivo downstream target of Nkx2.2 and enhances oligodendroglial cell differentiation. J Mol Cell Biol. 2011 Dec;3(6):351-9. doi: 10.1093/jmcb/mjr009. Epub 2011 Jun 13. PMID: 21669943.

Pais, T. F. et al. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 32, 2603–2616 (2013).

Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007 Aug;6(4):505-14. doi: 10.1111/j.1474-9726.2007.00304.x. Epub 2007 May 23. PMID: 17521387.

Kobayashi Y, Furukawa-Hibi Y, Chen C, Horio Y, Isobe K, Ikeda K, Motoyama N. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 2005 Aug;16(2):237-43. PMID: 16012755.

Lutz M. I., Milenkovic I., Regelsberger G., Kovacs G. G. (2014). Distinct patterns of sirtuin expression during progression of Alzheimer’s disease. Neuromolecular Med. 16, 405–414. doi:10.1007/s12017-014-8288-8.

Lalla R., Donmez G. (2013). The role of sirtuins in Alzheimer’s disease. Front. Aging Neurosci. 5, 16. doi:10.3389/fnagi.2013.00016.

Greco SJ, Hamzelou A, Johnston JM et al (2011) Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and β-amyloid in neurons. Biochem Biophys Res Commun 414:170–174. doi:10.1016/j.bbrc.2011.09.050.

Min S-W, Cho S-H, Zhou Y et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966. doi:10.1016/j.neuron.2010.08.044.

Marwarha G, Raza S, Meiers C, Ghribi O (2014) Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim Biophys Acta 1842:1587–1595. doi:10.1016/j.bbadis.2014.05.015.

Chen J., Zhou Y., Mueller-Steiner S., Chen L.-F., Kwon H., Yi S., et al. (2005). SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem. 280, 40364–40374. doi:10.1074/jbc.M509329200.

Jankovic JParkinson’s disease: clinical features and diagnosisJournal of Neurology, Neurosurgery & Psychiatry 2008;79:368-376.

Okawara M, Katsuki H, Kurimoto E et al (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560. doi:10.1016/j.bcp.2006.11.003

Mudò G, Mäkelä J, Di Liberto V et al (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci 69:1153–1165. doi:10.1007/s00018-011-0850-z

Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A. Emerging Role of Sirtuin 2 in Parkinson's Disease. Front Aging Neurosci. 2020 Jan 10;11:372. doi: 10.3389/fnagi.2019.00372. PMID: 31998119; PMCID: PMC6965030.

`Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med. 2017 Jul 5;7(7):a024240. doi: 10.1101/cshperspect.a024240. PMID: 27940602; PMCID: PMC5495055.

Naia L, Rego AC (2015) Sirtuins: double players in Huntington’s disease. Biochim Biophys Acta 1852:2183–2194. doi:10.1016/j.bbadis.2015.07.003

Seo J-S, Moon M-H, Jeong J-K et al (2012) SIRT1, a histone deacetylase, regulates prion protein-induced neuronal cell death. Neurobiol Aging 33:1110–1120. doi:10.1016/j.neurobiolaging.2010.09.019.

Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014 Feb 5;81(3):471-83. doi: 10.1016/j.neuron.2014.01.028. PMID: 24507186; PMCID: PMC4040287.

Kendall DM, Harmel AP. The metabolic syndrome, type 2 diabetes, and cardiovascular disease: understanding the role of insulin resistance. Am J Manag Care. 2002;8(20 Suppl):S635-S657.

DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30(12):1000-1007. doi:10.2337/diab.30.12.1000

Consensus Development Conference on Insulin Resistance. 5-6 November 1997. American Diabetes Association. Diabetes Care. 1998;21(2):310-314. doi:10.2337/diacare.21.2.310

Martins AR, Nachbar RT, Gorjao R, et al. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 2012;11:30. Published 2012 Feb 23. doi:10.1186/1476-511X-11-30

Martin WP, le Roux CW. Obesity Is a Disease. In: Haslam D, Malhotra A, Capehorn MS, eds. Bariatric Surgery in Clinical Practice. Cham (CH): Springer; August 25, 2022.23-28.

Axelsson J, Heimbürger O, Lindholm B, Stenvinkel P. Adipose tissue and its relation to inflammation: the role of adipokines. J Ren Nutr. 2005;15(1):131-136. doi:10.1053/j.jrn.2004.09.034

Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr. 2010;91(1):258S-261S. doi:10.3945/ajcn.2009.28449C

Timmers S, Schrauwen P, de Vogel J. Muscular diacylglycerol metabolism and insulin resistance. Physiol Behav. 2008;94(2):242-251. doi:10.1016/j.physbeh.2007.12.002

Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance [published correction appears in J Clin Invest. 2006 Aug;116(8):2308]. J Clin Invest. 2006;116(7):1793-1801. doi:10.1172/JCI29069

Koves TR, Li P, An J, et al. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem. 2005;280(39):33588-33598. doi:10.1074/jbc.M507621200

Naples SP, Borengasser SJ, Rector RS, et al. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity. Appl Physiol Nutr Metab. 2010;35(2):151-162. doi:10.1139/H09-139

Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte lipolysis and insulin resistance. Biochimie. 2016;125:259-266. doi:10.1016/j.biochi.2015.10.024

Stefanowicz M, Strączkowski M, Karczewska-Kupczewska M. Rola SIRT1 w patogenezie insulinoopornościmięśni szkieletowych [The role of SIRT1 in the pathogenesis of insulin resistance in skeletal muscle]. Postepy Hig Med Dosw (Online). 2015;69:63-68. Published 2015 Jan 16. doi:10.5604/17322693.1136379

Shoba B, Lwin ZM, Ling LS, Bay BH, Yip GW, Kumar SD. Function of sirtuins in biological tissues. Anat Rec (Hoboken). 2009;292(4):536-543. doi:10.1002/ar.20875

Frydzińska Z, Owczarek A, Winiarska K. Sirtuiny i ich rola w regulacji metabolizmu [Sirtuins and their role in metabolism regulation]. Postepy Biochem. 2019;65(1):31-40. doi:10.18388/pb.2019_254

Schenk S, McCurdy CE, Philp A, et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest. 2011;121(11):4281-4288. doi:10.1172/JCI58554

Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007;6(4):307-319. doi:10.1016/j.cmet.2007.08.014

Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612-622. doi:10.1016/j.cmet.2011.10.002

Gillum MP, Kotas ME, Erion DM, et al. SirT1 regulates adipose tissue inflammation. Diabetes. 2011;60(12):3235-3245. doi:10.2337/db11-0616

Chen J, Lou R, Zhou F, Li D, Peng C, Lin L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front Immunol. 2022;13:1068986. Published 2022 Nov 24. doi:10.3389/fimmu.2022.1068986

Zhou S, Tang X, Chen HZ. Sirtuins and Insulin Resistance. Front Endocrinol (Lausanne). 2018;9:748. Published 2018 Dec 6. doi:10.3389/fendo.2018.00748

Wu Q, Gao ZJ, Yu X, Wang P. Dietary regulation in health and disease. Signal Transduct Target Ther. 2022;7(1):252. Published 2022 Jul 23. doi:10.1038/s41392-022-01104-w.

Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin family's role in aging and age-associated pathologies. J Clin Invest. 2013;123(3):973-979. doi:10.1172/JCI64094.

Maldonado M., Chen J., Duan H., Huang T., Jiang G., Zhong Y. High Calorie Diet Background Alters the Expression of Sirtuins in the Testes of Mice under Caloric Restriction. Transl. Med. Aging. 2021;5:10–16. doi: 10.1016/j.tma.2021.02.001.

Yzydorczyk C, Li N, Rigal E, et al. Calorie Restriction in Adulthood Reduces Hepatic Disorders Induced by Transient Postnatal Overfeeding in Mice. Nutrients. 2019;11(11):2796. Published 2019 Nov 16. doi:10.3390/nu11112796.

Opstad TB, Farup PG, Rootwelt H, Aaseth JO. Changes in circulating sirtuin 1 after bariatric surgery. Nutr Metab Cardiovasc Dis. 2022;32(12):2858-2864. doi:10.1016/j.numecd.2022.09.009.

Chen M, Tan J, Jin Z, Jiang T, Wu J, Yu X. Research progress on Sirtuins (SIRTs) family modulators. Biomed Pharmacother. 2024;174:116481. doi:10.1016/j.biopha.2024.116481.

Zhou L, Xu DY, Sha WG, et al. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J Transl Med. 2015;13:352. Published 2015 Nov 9. doi:10.1186/s12967-015-0710-y.

Mastrocola R, Nigro D, Chiazza F, et al. Fructose-derived advanced glycation end-products drive lipogenesis and skeletal muscle reprogramming via SREBP-1c dysregulation in mice. Free Radic Biol Med. 2016;91:224-235. doi:10.1016/j.freeradbiomed.2015.12.022.

Lanza IR, Short DK, Short KR, et al. Endurance exercise as a countermeasure for aging [published correction appears in Diabetes. 2012 Oct;61(10):2653]. Diabetes. 2008;57(11):2933-2942. doi:10.2337/db08-0349.

Palacios OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY). 2009;1(9):771-783. Published 2009 Aug 15. doi:10.18632/aging.100075.

Vargas-Ortiz K, Pérez-Vázquez V, Macías-Cervantes MH. Exercise and Sirtuins: A Way to Mitochondrial Health in Skeletal Muscle. Int J Mol Sci. 2019;20(11):2717. Published 2019 Jun 3. doi:10.3390/ijms20112717.

Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann Med. 2007;39(5):335-345. doi:10.1080/07853890701408194.

Villanova L, Vernucci E, Pucci B, et al. Influence of age and physical exercise on sirtuin activity in humans. J Biol Regul Homeost Agents. 2013;27(2):497-507.

Sellitto C., Corbi G., Stefanelli B., Manzo V., Trucillo M., Charlier B., Mensitieri F., Izzo V., Lucariello A., Perna A., et al. Antioxidant Supplementation Hinders the Role of Exercise Training as a Natural Activator of SIRT1. Nutrients. 2022;14:2092. doi: 10.3390/nu14102092.

Wang XL, Wu LY, Zhao L, et al. SIRT1 activator ameliorates the renal tubular injury induced by hyperglycemia in vivo and in vitro via inhibiting apoptosis. Biomed Pharmacother. 2016;83:41-50. doi:10.1016/j.biopha.2016.06.009.

Donniacuo M, Urbanek K, Nebbioso A, et al. Cardioprotective effect of a moderate and prolonged exercise training involves sirtuin pathway. Life Sci. 2019;222:140-147. doi:10.1016/j.lfs.2019.03.001.

Yanagisawa S, Baker JR, Vuppusetty C, et al. The dynamic shuttling of SIRT1 between cytoplasm and nuclei in bronchial epithelial cells by single and repeated cigarette smoke exposure. PLoS One. 2018;13(3):e0193921. Published 2018 Mar 6. doi:10.1371/journal.pone.0193921.

Jiang HK, Miao Y, Wang YH, et al. Aerobic interval training protects against myocardial infarction-induced oxidative injury by enhancing antioxidase system and mitochondrial biosynthesis. Clin Exp Pharmacol Physiol. 2014;41(3):192-201. doi:10.1111/1440-1681.12211.

Hubbard BP, Gomes AP, Dai H, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339(6124):1216-1219. doi:10.1126/science.1231097.

Qin H, Zhang H, Zhang X, Zhang S, Zhu S, Wang H. Resveratrol attenuates radiation enteritis through the SIRT1/FOXO3a and PI3K/AKT signaling pathways. Biochem Biophys Res Commun. 2021;554:199-205. doi:10.1016/j.bbrc.2021.03.122.

Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191-196. doi:10.1038/nature01960.

Lakshminarasimhan M, Rauh D, Schutkowski M, Steegborn C. Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany NY). 2013;5(3):151-154. doi:10.18632/aging.100542.

Gertz M, Nguyen GT, Fischer F, et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One. 2012;7(11):e49761. doi:10.1371/journal.pone.0049761.

Côté CD, Rasmussen BA, Duca FA, et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat Med. 2015;21(5):498-505. doi:10.1038/nm.3821.

Nathan L. Price, Ana P. Gomes, Alvin J.Y. Ling, Filipe V. Duarte, A. MartinMontalvo, Brian J. North, et al., SIRT1 Is Required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function, Cell Metab. 15 (5) (2012) 675–690, https://doi.org/10.1016/j.cmet.2012.04.003.

Pan Y, Zhang H, Zheng Y, et al. Resveratrol Exerts Antioxidant Effects by Activating SIRT2 To Deacetylate Prx1. Biochemistry. 2017;56(48):6325-6328. doi:10.1021/acs.biochem.7b00859.

Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J. 2009;418(1):29-37. doi:10.1042/BJ20081258.

Fiskus W, Coothankandaswamy V, Chen J, et al. SIRT2 Deacetylates and Inhibits the Peroxidase Activity of Peroxiredoxin-1 to Sensitize Breast Cancer Cells to Oxidant Stress-Inducing Agents. Cancer Res. 2016;76(18):5467-5478. doi:10.1158/0008-5472.CAN-16-0126.

A. Liang, W. Zhang, Q. Wang, L. e Huang, J. Zhang, D. Ma, et al., Resveratrol regulates insulin resistance to improve the glycolytic pathway by activating SIRT2 in PCOS granulosa cells, Front. Nutr. 9 (2023) 1019562, https://doi.org/ 10.3389/fnut.2022.1019562.

Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res. 2012;750(1):60-82. doi:10.1016/j.mrrev.2011.11.001.

Quality in Sport

Downloads

  • PDF

Published

2025-06-11

How to Cite

1.
MATUSZYŃSKI, Wojciech, MATUSZYŃSKA, Maria, NOWICKA, Patrycja, JEZIERSKA, Karolina, KALINOWSKA, Weronika and GURAL, Mateusz. Sirtuins as multifunctional regulators: Role in the pathogenesis of metabolic, inflammatory and neurodegenerative diseases and the effect of physical activity on their activity. Quality in Sport. Online. 11 June 2025. Vol. 42, p. 60514. [Accessed 5 July 2025]. DOI 10.12775/QS.2025.42.60514.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 42 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Wojciech Matuszyński, Maria Matuszyńska, Patrycja Nowicka, Karolina Jezierska, Weronika Kalinowska, Mateusz Gural

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 139
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Exercise and sirtuins, Sirtuins, Multifunctional regulators, Physical activity, Oxidative stress, Mitochondrial function, Gene regulation, Neurodegenerative diseases, Metabolic diseases, Inflammatory diseases, Sport, NAD+ metabolism
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop