Synergy of pharmacotherapy and physical activity in the treatment of obesity and cardiovascular prevention in patients with type 2 diabetes
DOI:
https://doi.org/10.12775/QS.2025.42.60480Keywords
pharmacotherapy, metformin, GLP-1 agonist, SGLT-2 inhibitors, physical activity, obesity, cardiovascular prevention, , type 2 diabetesAbstract
Aim of the study
The aim of this paper is to explore the synergistic role of pharmacotherapy and physical activity in the treatment of obesity and the prevention of cardiovascular diseases in patients with type 2 diabetes.
Materials and methods
This review is based on selected publications from 1999 to 2025, retrieved from PubMed, WHO, and StatPearls using keywords related to type 2 diabetes, pharmacotherapy, and physical activity. Included were guidelines, clinical trials, and meta-analyses focusing on adults with T2DM. In total, 38 sources were analyzed, covering treatments such as metformin, GLP-1 receptor agonists, SGLT2 inhibitors, DPP-4 inhibitors, and lifestyle interventions [1–28].
Results
The combination of pharmacotherapy and physical activity in T2DM patients led to better glycemic control, greater weight reduction, and improved cardiovascular outcomes compared to either intervention alone.
Conclusion
The management of type 2 diabetes (T2DM) and its associated complications, particularly cardiovascular disease (CVD) and obesity, requires a multifaceted approach. Pharmacotherapy and physical activity are two critical components in the treatment and prevention of these conditions. While each of these interventions offers distinct benefits, their combination provides enhanced outcomes that are greater than the sum of their individual effects.
References
1. World Health Organization. Global report on diabetes. Geneva: WHO; 2016. Available from: https://www.who.int/publications/i/item/9789241565257
2. Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the ADA and the EASD. Diabetes Care. 2022;45(11):2753–2786. doi:10.2337/dci22-0034
3. Eckel RH, Kahn SE, Ferrannini E, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34(6):1424–1430. doi:10.2337/dc11-0447
4. Seshasai SRK, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–841. doi:10.1056/NEJMoa1008862
5. Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–2079. doi:10.2337/dc16-1728
6. Nathan DM, Buse JB, Davidson MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care. 2009;32(1):S193–S203. doi:10.2337/dc25-SINT
7. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. doi:10.1007/s00125-017-4342-z
8. He L. Metformin and Systemic Metabolism. Trends Pharmacol Sci. 2020 Nov;41(11):868-881. doi: 10.1016/j.tips.2020.09.001. Epub 2020 Sep 28. PMID: 32994049; PMCID: PMC7572679.
9. King P, Peacock I, Donnelly R. The UK Prospective Diabetes Study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol. 1999;48(5):643–648. doi:10.1046/j.1365-2125.1999.00092.x
10. Zhang Y, Wang X, Liu Y, et al. Metformin attenuates endothelial cell apoptosis and improves mitochondrial function in diabetic conditions. Journal of Molecular and Cellular Cardiology. 2023;179:123–134. doi:10.1016/j.yjmcc.2023.05.007 11. Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: clinical evidence and AMPK‐dependent mechanisms. J Cell Mol Med. 2022;26(3):765–785. doi:10.1111/jcmm.17519 12. Latif W, Lambrinos KJ, Patel P, et al. Compare and Contrast the Glucagon-Like Peptide-1 Receptor Agonists (GLP1RAs) [Updated 2024 Feb 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK572151/
13. Maselli, D.B., Camilleri, M. (2020). Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity. In: Islam, M.S. (eds) Diabetes: from Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1307. Springer, Cham. https://doi.org/10.1007/5584_2020_496
14. Kalra, S. Follow the LEADER—Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results Trial. Diabetes Ther 7, 601–609 (2016). https://doi.org/10.1007/s13300-016-0197-4
15. Padda IS, Mahtani AU, Parmar M. Sodium-Glucose Transport Protein 2 (SGLT2) Inhibitors. [Updated 2023 Jun 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK576405/ 16. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC,
Inzucchi SE; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015 Nov 26;373(22):2117-28. doi: 10.1056/NEJMoa1504720. Epub 2015 Sep 17. PMID: 26378978. 17. Kasina SVSK, Baradhi KM. Dipeptidyl Peptidase IV (DPP IV) Inhibitors. [Updated 2023 May 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542331/ 18. Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther. 2020 May;209:107503. doi: 10.1016/j.pharmthera.2020.107503. Epub 2020 Feb 14. PMID: 32061923; PMCID: PMC7102585.
19. Brunton S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: is one approach more successful or preferable than the other? Int J Clin Pract. 2014 May;68(5):557-67. doi: 10.1111/ijcp.12361. Epub 2014 Feb 6. PMID: 24499291; PMCID: PMC4238422. 20. Tchang BG, Aras M, Kumar RB, et al. Pharmacologic Treatment of Overweight and Obesity in Adults. [Updated 2024 Aug 20]. In:
Feingold KR, Ahmed SF, Anawalt B, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279038/
21. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1):e000143. doi:10.1136/bmjsem-2016-000143
22. Mikus CR, Oberlin DJ, Libla JL, et al. Lowering physical activity impairs glycemic control in healthy volunteers. Med Sci Sports Exerc. 2012;44(2):225–231. doi:10.1249/MSS.0b013e31822dcd4f
23. Way KL, Hackett DA, Baker MK, Johnson NA. The effect of regular aerobic exercise on blood lipids in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Clin Obes. 2016;6(2):73–81. doi:10.1111/cob.12128 24.Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1):e000143. doi:10.1136/bmjsem-2016-000143
25. Holten MK, Zacho M, Gaster M, et al. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes. 2004;53(2):294–305. doi:10.2337/diabetes.53.2.294.Diabetes Journals+2Harvard Dash+2BioMed Central+2
26. Ibañez J, Izquierdo M, Argüelles I, et al. Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care. 2005;28(3):662–667. doi:10.2337/diacare.28.3.662. 27. Umpierre D, Ribeiro PA, Kramer CK, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790–1799. doi:10.1001/jama.2011.576. 28. The Look AHEAD Research Group. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170(17):1566–1575. doi:10.1001/archinternmed.2010.334.
29. Zhao X, He Q, Zeng Y, Cheng L. Effectiveness of combined exercise in people with type 2 diabetes and concurrent overweight/obesity: a systematic review and meta-analysis. BMJ Open. 2021;11(10):e046252. doi:10.1136/bmjopen-2020-046252. 30. Boulé NG, Haddad E, Kenny GP, et al. Effects of exercise training on glycemic control and body mass in type 2 diabetes mellitus. Diabetes Care. 2001;24(6):1085–1094. doi:10.2337/diacare.24.6.1085.
31. GRADE Study. A comparison of strategies for managing type 2 diabetes: The GRADE study. JAMA. 2018;320(8):746–760. doi:10.1001/jama.2018.11163.
32. The VERIFY Study Group. The effect of liraglutide and exercise on insulin sensitivity and cardiovascular risk factors. Diabetes Care. 2020;43(7):1472–1481. doi:10.2337/dc19-1823.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Karolina Mędrysa, Marlena Jankowska, Karolina Baran, Natalia Jańczyk, Gabriela Blecharz, Michał Presak, Katarzyna Bartnik, Jakub Jan Pokrzepa, Julia Szwech, Mikołaj Pograniczny

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 102
Number of citations: 0