The Application of Artificial Intelligence in Medical Diagnostics: Implications for Sports Medicine
DOI:
https://doi.org/10.12775/QS.2025.41.60392Keywords
Artificial intelligence, machine learning, Imaging Diagnostics, Sports Medicine, Injury Prevention, Predictive Analytics, Healthcare Technology, Computer Vision, Deep LearningAbstract
This review paper examines the burgeoning role of Artificial Intelligence (AI) in medicine, particularly in diagnostics and sports medicine, by enhancing accuracy, efficiency, and personalization in patient care. With 25 years of development, AI technologies, including machine learning, deep learning, natural language processing, and computer vision, are making significant strides in interpreting medical data and supporting clinical decision-making. Recent advancements allow AI systems to analyze physiological, biomechanical, and behavioral data, leading to improved injury prevention and performance optimization in athletes. These AI-driven tools can predict injury risks by evaluating training loads, biomechanics, and real-time physiological signals. However, their integration into healthcare raises critical ethical concerns related to data privacy, algorithmic bias, and transparency. Ensuring responsible AI use requires adherence to established medical ethics principles—autonomy, beneficence, nonmaleficence, and justice. As AI continues to reshape healthcare delivery, it is essential to strike a balance between technology and compassionate care. By focusing on ethical considerations and refining AI technologies, the healthcare community can harness AI's full potential while safeguarding patient interests and enhancing outcomes. This transformative journey signifies not just technological advancement, but a commitment to improving human health through informed, ethical practices. The future of AI in medicine hinges on maintaining this delicate equilibrium, ensuring that innovations augment rather than diminish the core values of patient-centric care.
References
[1] Coiera EW. Artificial intelligence in medicine: the challenges ahead. J Am Med Inform Assoc. 1996 Nov-Dec;3(6):363-6. doi: 10.1136/jamia.1996.97084510. PMID: 8930853; PMCID: PMC116321.
[2] Mahmoudi T, Mehdizadeh A. Artificial Intelligence in Medicine. J Biomed Phys Eng. 2022 Dec 1;12(6):549-550. doi: 10.31661/jbpe.v0i0.2211-1566. PMID: 36569566; PMCID: PMC9759649.
[3] Pop-Jordanova N. Opportunity to Use Artificial Intelligence in Medicine. Pril (Makedon Akad Nauk Umet Odd Med Nauki). 2024 Jul 15;45(2):5-13. doi: 10.2478/prilozi-2024-0009. PMID: 39008641.
[4] Paulson RJ. Artificial intelligence in medicine: it is neither new, nor frightening. F S Rep. 2023 Aug 9;4(3):239-240. doi: 10.1016/j.xfre.2023.08.004. PMID: 37719090; PMCID: PMC10504549.
[5] Xie Y, Zhai Y, Lu G. Evolution of artificial intelligence in healthcare: a 30-year bibliometric study. Front Med (Lausanne). 2025 Jan 15;11:1505692. doi: 10.3389/fmed.2024.1505692. PMID: 39882522; PMCID: PMC11775008.
[6] Reis FJJ, Alaiti RK, Vallio CS, Hespanhol L. Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives. Braz J Phys Ther. 2024 May-Jun;28(3):101083. doi: 10.1016/j.bjpt.2024.101083. Epub 2024 May 21. PMID: 38838418; PMCID: PMC11215955.
[7] Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24. PMID: 28436741.
[8] B. Shickel, P. J. Tighe, A. Bihorac and P. Rashidi, "Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis," in IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 5, pp. 1589-1604, Sept. 2018, doi: 10.1109/JBHI.2017.2767063.
[9] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26. PMID: 28778026.
[10] Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25. Erratum in: Nature. 2017 Jun 28;546(7660):686. doi: 10.1038/nature22985. PMID: 28117445; PMCID: PMC8382232.
[11] Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, Liu S, Zeng Y, Mehrabi S, Sohn S, Liu H. Clinical information extraction applications: A literature review. J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21. PMID: 29162496; PMCID: PMC5771858.
[12] Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24. PMID: 28436741.
[13] Lee D, Yoon SN. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. Int J Environ Res Public Health. 2021 Jan 1;18(1):271. doi: 10.3390/ijerph18010271. PMID: 33401373; PMCID: PMC7795119.
[14]Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018 Oct 24;2(1):35. doi: 10.1186/s41747-018-0061-6. PMID: 30353365; PMCID: PMC6199205.
[15] Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of Artificial Intelligence in Medicine: An Overview. Curr Med Sci. 2021 Dec;41(6):1105-1115. doi: 10.1007/s11596-021-2474-3. Epub 2021 Dec 6. PMID: 34874486; PMCID: PMC8648557.
[16 Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz CP, Patel BN, Yeom KW, Shpanskaya K, Blankenberg FG, Seekins J, Amrhein TJ, Mong DA, Halabi SS, Zucker EJ, Ng AY, Lungren MP. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018 Nov 20;15(11):e1002686. doi: 10.1371/journal.pmed.1002686. PMID: 30457988; PMCID: PMC6245676. ,
[17] Reis FJJ, Alaiti RK, Vallio CS, Hespanhol L. Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives. Braz J Phys Ther. 2024 May-Jun;28(3):101083. doi: 10.1016/j.bjpt.2024.101083. Epub 2024 May 21. PMID: 38838418; PMCID: PMC11215955.
[18] Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, Mottram A, Meyer C, Ravuri S, Protsyuk I, Connell A, Hughes CO, Karthikesalingam A, Cornebise J, Montgomery H, Rees G, Laing C, Baker CR, Peterson K, Reeves R, Hassabis D, King D, Suleyman M, Back T, Nielson C, Ledsam JR, Mohamed S. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019 Aug;572(7767):116-119. doi: 10.1038/s41586-019-1390-1. Epub 2019 Jul 31. PMID: 31367026; PMCID: PMC6722431.
[19] Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Dahly DL, Damen JAA, Debray TPA, de Jong VMT, De Vos M, Dhiman P, Haller MC, Harhay MO, Henckaerts L, Heus P, Kammer M, Kreuzberger N, Lohmann A, Luijken K, Ma J, Martin GP, McLernon DJ, Andaur Navarro CL, Reitsma JB, Sergeant JC, Shi C, Skoetz N, Smits LJM, Snell KIE, Sperrin M, Spijker R, Steyerberg EW, Takada T, Tzoulaki I, van Kuijk SMJ, van Bussel B, van der Horst ICC, van Royen FS, Verbakel JY, Wallisch C, Wilkinson J, Wolff R, Hooft L, Moons KGM, van Smeden M. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020 Apr 7;369:m1328. doi: 10.1136/bmj.m1328. Update in: BMJ. 2021 Feb 3;372:n236. doi: 10.1136/bmj.n236. Erratum in: BMJ. 2020 Jun 3;369:m2204. doi: 10.1136/bmj.m2204. PMID: 32265220; PMCID: PMC7222643.
[20] Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M, Sundberg P, Yee H, Zhang K, Zhang Y, Flores G, Duggan GE, Irvine J, Le Q, Litsch K, Mossin A, Tansuwan J, Wang D, Wexler J, Wilson J, Ludwig D, Volchenboum SL, Chou K, Pearson M, Madabushi S, Shah NH, Butte AJ, Howell MD, Cui C, Corrado GS, Dean J. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1. PMID: 31304302; PMCID: PMC6550175.
[21] McCoy TH, Castro VM, Cagan A, Roberson AM, Kohane IS, Perlis RH. Sentiment Measured in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic Health Record Study. PLoS One. 2015 Aug 24;10(8):e0136341. doi: 10.1371/journal.pone.0136341. PMID: 26302085; PMCID: PMC4547711.
[22] Reis FJJ, Alaiti RK, Vallio CS, Hespanhol L. Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives. Braz J Phys Ther. 2024 May-Jun;28(3):101083. doi: 10.1016/j.bjpt.2024.101083. Epub 2024 May 21. PMID: 38838418; PMCID: PMC11215955.
[23] Denay, Keri L. MD. Stress Fractures. Current Sports Medicine Reports 16(1):p 7-8, 1/2 2017. | DOI: 10.1249/JSR.0000000000000320
[24] M. Melzner, L. Engelhardt, F. Süß, S. Dendorfer, Sensitivity evaluation of a musculoskeletal hand model using Latin hypercube sampling,Gait & Posture,Volume 81, Supplement 1,2020,Page 228,ISSN 0966-6362,doi./10.1016/j.gaitpost.2020.08.008.
[25] Shen D, Wu G, Suk HI. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng. 2017 Jun 21;19:221-248. doi: 10.1146/annurev-bioeng-071516-044442. Epub 2017 Mar 9. PMID: 28301734; PMCID: PMC5479722.
[26] Filiberto AC, Leeds IL, Loftus TJ. Editorial: Machine Learning in Clinical Decision-Making. Front Digit Health. 2021 Nov 18;3:784495. doi: 10.3389/fdgth.2021.784495. PMID: 34870273; PMCID: PMC8636718.
[27] Razzak MI, Imran M, Xu G. Big data analytics for preventive medicine. Neural Comput Appl. 2020;32(9):4417-4451. doi: 10.1007/s00521-019-04095-y. Epub 2019 Mar 16. PMID: 32205918; PMCID: PMC7088441.
[28] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, Wang Y, Dong Q, Shen H, Wang Y. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017 Jun 21;2(4):230-243. doi: 10.1136/svn-2017-000101. PMID: 29507784; PMCID: PMC5829945.
[29] Bourdon PC, Cardinale M, Murray A, Gastin P, Kellmann M, Varley MC, Gabbett TJ, Coutts AJ, Burgess DJ, Gregson W, Cable NT. Monitoring Athlete Training Loads: Consensus Statement. Int J Sports Physiol Perform. 2017 Apr;12(Suppl 2):S2161-S2170. doi: 10.1123/IJSPP.2017-0208. PMID: 28463642.
[30] Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014 Nov;44 Suppl 2(Suppl 2):S139-47. doi: 10.1007/s40279-014-0253-z. PMID: 25200666; PMCID: PMC4213373.
[31] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539. PMID: 26017442.
[32] Windt J, Gabbett TJ. How do training and competition workloads relate to injury? The workload-injury aetiology model. Br J Sports Med. 2017 Mar;51(5):428-435. doi: 10.1136/bjsports-2016-096040. Epub 2016 Jul 14. PMID: 27418321.
[33] Walsh V. Is sport the brain's biggest challenge? Curr Biol. 2014 Sep 22;24(18):R859-R860. doi: 10.1016/j.cub.2014.08.003. PMID: 25247362.
[34] Dergaa I, Saad HB, El Omri A, Glenn JM, Clark CCT, Washif JA, Guelmami N, Hammouda O, Al-Horani RA, Reynoso-Sánchez LF, Romdhani M, Paineiras-Domingos LL, Vancini RL, Taheri M, Mataruna-Dos-Santos LJ, Trabelsi K, Chtourou H, Zghibi M, Eken Ö, Swed S, Aissa MB, Shawki HH, El-Seedi HR, Mujika I, Seiler S, Zmijewski P, Pyne DB, Knechtle B, Asif IM, Drezner JA, Sandbakk Ø, Chamari K. Using artificial intelligence for exercise prescription in personalised health promotion: A critical evaluation of OpenAI's GPT-4 model. Biol Sport. 2024 Mar;41(2):221-241. doi: 10.5114/biolsport.2024.133661. Epub 2023 Dec 13. PMID: 38524814; PMCID: PMC10955739.
[35] Truppa L, Guaitolini M, Garofalo P, Castagna C, Mannini A. Assessment of Biomechanical Response to Fatigue through Wearable Sensors in Semi-Professional Football Referees. Sensors (Basel). 2020 Dec 24;21(1):66. doi: 10.3390/s21010066. PMID: 33374324; PMCID: PMC7795543.
[36] Biró A, Cuesta-Vargas AI, Szilágyi L. AI-Assisted Fatigue and Stamina Control for Performance Sports on IMU-Generated Multivariate Times Series Datasets. Sensors (Basel). 2023 Dec 26;24(1):132. doi: 10.3390/s24010132. PMID: 38202992; PMCID: PMC10781393.
[37] Morley J, Machado CCV, Burr C, Cowls J, Joshi I, Taddeo M, Floridi L. The ethics of AI in health care: A mapping review. Soc Sci Med. 2020 Sep;260:113172. doi: 10.1016/j.socscimed.2020.113172. Epub 2020 Jul 15. PMID: 32702587.
[38] Elendu C, Amaechi DC, Elendu TC, Jingwa KA, Okoye OK, John Okah M, Ladele JA, Farah AH, Alimi HA. Ethical implications of AI and robotics in healthcare: A review. Medicine (Baltimore). 2023 Dec 15;102(50):e36671. doi: 10.1097/MD.0000000000036671. PMID: 38115340; PMCID: PMC10727550.
[39] Wang C, Liu S, Yang H, Guo J, Wu Y, Liu J. Ethical Considerations of Using ChatGPT in Health Care. J Med Internet Res. 2023 Aug 11;25:e48009. doi: 10.2196/48009. PMID: 37566454; PMCID: PMC10457697.
[40] Maleki Varnosfaderani S, Forouzanfar M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel). 2024 Mar 29;11(4):337. doi: 10.3390/bioengineering11040337. PMID: 38671759; PMCID: PMC11047988.
[41] Potočnik J, Foley S, Thomas E. Current and potential applications of artificial intelligence in medical imaging practice: A narrative review. J Med Imaging Radiat Sci. 2023 Jun;54(2):376-385. doi: 10.1016/j.jmir.2023.03.033. Epub 2023 Apr 14. PMID: 37062603.
[42] Lu H, Alhaskawi A, Dong Y, Zou X, Zhou H, Ezzi SHA, Kota VG, Hasan Abdulla Hasan Abdulla M, Abdalbary SA. Patient Autonomy in Medical Education: Navigating Ethical Challenges in the Age of Artificial Intelligence. Inquiry. 2024 Jan-Dec;61:469580241266364. doi: 10.1177/00469580241266364. PMID: 39290068; PMCID: PMC11409288.
[43] Savulescu J, Giubilini A, Vandersluis R, Mishra A. Ethics of artificial intelligence in medicine. Singapore Med J. 2024 Mar 1;65(3):150-158. doi: 10.4103/singaporemedj.SMJ-2023-279. Epub 2024 Mar 26. PMID: 38527299; PMCID: PMC7615805.
[44]Farhud DD, Zokaei S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran J Public Health. 2021 Nov;50(11):i-v. doi: 10.18502/ijph.v50i11.7600. PMID: 35223619; PMCID: PMC8826344.
[45] Kantor J. ChatGPT, large language models, and artificial intelligence in medicine and health care: A primer for clinicians and researchers. JAAD Int. 2023 Jul 29;13:168-169. doi: 10.1016/j.jdin.2023.07.011. PMID: 37823044; PMCID: PMC10562174.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michał Bolek, Dominika Musialska, Aleksandra Kędzia, Bartosz Jagieła, Monika Fidyk, Magda Minkiewicz, Maciej Dyda

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 30
Number of citations: 0