Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Effectiveness, Limitations, and Future Perspectives of CAR-T Cell Therapy in Solid Tumor Treatment: A Narrative Review
  • Home
  • /
  • Effectiveness, Limitations, and Future Perspectives of CAR-T Cell Therapy in Solid Tumor Treatment: A Narrative Review
  1. Home /
  2. Archives /
  3. Vol. 41 (2025) /
  4. Medical Sciences

Effectiveness, Limitations, and Future Perspectives of CAR-T Cell Therapy in Solid Tumor Treatment: A Narrative Review

Authors

  • Dmytro Kowalczuk Międzyleski Specialist Hospital in Warsaw, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0004-1433-5052
  • Viktoryia Kasianik Mazovian Rehabilitation Center STOCER Ltd. Saint Anna Trauma Surgery Hospital, Barska 16/20, 02-315 Warsaw, Poland https://orcid.org/0009-0004-1540-5227
  • Darya Lazitskaya Międzyleski Specialist Hospital in Warsaw, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0007-8680-8826
  • Kamil Turlej University Clinical Center of the Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland https://orcid.org/0009-0008-2919-284X
  • Mykola Sobchynskyi Międzyleski Specialist Hospital in Warsaw, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0008-1804-1114
  • Valeryia Milasheuskaya Wroclaw Medical University, wyb.Ludwika Pasteura 1, 50-367 Wroclaw, Poland https://orcid.org/0009-0006-4126-2375
  • Andrii Myrnyi University Clinical Center of the Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland https://orcid.org/0009-0006-5592-259X
  • Iga Kiełbaszewska Independent Public Healthcare Centre in Hajnówka, Doc. Adama Dowgirda 9, 17-200 Hajnówka, Poland https://orcid.org/0009-0004-9892-4769
  • Natalia Surosz Międzyleski Specialist Hospital in Warsaw, Bursztynowa 2, 04-749 Warsaw, Poland https://orcid.org/0009-0005-1939-151X
  • Katsiaryna Miraniuk Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland https://orcid.org/0009-0006-1406-9756

DOI:

https://doi.org/10.12775/QS.2025.41.60162

Keywords

CAR-T cells, solid tumors, tumor microenvironment, cancer immunotherapy

Abstract

Introduction: In recent years, immunotherapy has revolutionized therapeutic approaches to cancer treatment. Chimeric Antigen Receptor T-cell (CAR-T) immunotherapy has achieved significant success in the treatment of hematological cancers; however, its effectiveness in solid tumors remains limited.

Aim of Study: To analyze and summarize the current knowledge on the effectiveness, limitations, development prospects, and improvements of CAR-T cells in the treatment of solid tumors.

Brief Description of the State of Knowledge: Despite promising results in hematologic malignancies, the application of CAR-T in solid tumors faces numerous challenges. Key obstacles include the lack of tumor-specific antigens, ineffective targeting and infiltration of CAR-T cells into tumor sites, the immunosuppressive tumor microenvironment (TME), treatment-related toxicity, and antigen escape. The future directions for CAR-T therapy development in solid tumors are the identification of new antigens, optimization of CAR constructs, modification of the TME, and potential combination therapies.

Conclusions: CAR-T therapy represents a promising and personalized approach to cancer treatment, with the potential for durable responses and applications in solid tumors, although further improvements are necessary to overcome existing limitations and enhance the effectiveness and safety of this therapy.

References

1. Pan C, Liu H, Robins E, Song W,Liu D, Li Z, Zheng L. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13(1):29.

2. Pasquini MC, Hu ZH, Curran K, Laetsch T, Locke F, Rouce R, Pulsipher MA, Phillips CL, Keating A, Frigault MJ, Salzberg D, Jaglowski S, Sasine JP, Rosenthal J, Ghosh M, Landsburg D, Margossian S, Martin PL, Kamdar MK, Hematti P, Nikiforow S, Turtle C, Perales MA, Steinert P, Horowitz MM, Moskop A, Pacaud L, Yi L, Chawla R, Bleickardt E, Grupp S. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020;4:5414–24.

3. Pan J, Zuo S, Deng B, Xu X, Li C, Zheng Q, Ling Z, Song W, Xu J, Duan J, Wang Z, Yu X, Chang A H, Feng X, Tong C. Sequential CD19–22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood. 2020;135:387–91.

4. Que Y, Xu M, Xu Y, Almeida VDF, Zhu L, Wang Z, Wang Y, Liu X, Jiang L, Di Wang Di, Li C, Zhou J. Anti-BCMA CAR-T Cell Therapy in Relapsed/Refractory Multiple Myeloma Patients With Extramedullary Disease: A Single Center Analysis of Two Clinical Trials. Front Immunol. 2021;12:755866.

5. Liu Z, Zhou Z, Dang Q, Xu H, Lv J, Li H, Han X. Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics. 2022;12:6273–90.

6. Liu G, Rui W, Zhao X, Lin X. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cell Mol Immunol. 2021;18:1085–95.

7. Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology. 2016;5:e1251539.

8. Lazaro-Gorines R, Ruiz-de-la-Herran J, Navarro R, Sanz L, Alvarez-Vallina L, Martinez-Del-Pozo A, J G Gavilanes, J Lacadena. A novel Carcinoembryonic Antigen (CEA)-Targeted Trimeric Immunotoxin shows significantly enhanced Antitumor Activity in Human Colorectal Cancer Xenografts. Sci Rep. 2019;9:11680.

9. Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, Zhang R, Xiong Z, Wei Z, Shen J, Luo Y, Zhang Q, Liu L, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang X, Bie P, Liang H, Pecher G, Qian C. Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA(+) Metastatic Colorectal Cancers. Mol Ther. 2017;25:1248–58.

10. Dai H, Tong C, Shi D, Chen M, Guo Y, Chen D, Han X, Wang H, Wang Y, Shen P . Efficacy and biomarker analysis of CD133-directed CAR T cells in advanced hepatocellular carcinoma: a single-arm, open-label, phase II trial. Oncoimmunology. 2020;9:1846926.

11. Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, Gray T, Wu M, Liu H, Hicks J, Rainusso N, Dotti G, Mei Z, Grilley B, Gee A, Rooney C, Brenner M K, Heslop H E, Wels W S, Wang L L, Anderson P, Gottschalk S. Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J Clin Oncol. 2015;33:1688–96.

12. P. F. Robbins, R. A. Morgan, S. A. Feldman, J. C. Yang, R. M. Sherry, M. E. Dudley, J. R. Wunderlich, A. V. Nahvi, L. J. Helman, C. L. Mackall, U. S. Kammula, M. S. Hughes, N. P. Restifo, M. Raffeld, C.-C. R. Lee, C. L. Levy, Y. F. Li, M. El-Gamil, S. L. Schwarz, C. Laurencot, S. A. Rosenberg, Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

13. S. P. D’Angelo, B. A. Van Tine, S. Attia, J.-Y. Blay, S. J. Strauss, C. M. Valverde Morales, A. R. Abdul Razak, E. Van Winkle, T. Trivedi, S. Biswas, D. Williams, E. Norry, D. M. Araujo, SPEARHEAD-1: A phase 2 trial of afamitresgene autoleucel (formerly ADP-A2M4) in patients with advanced synovial sarcoma or myxoid/round cell liposarcoma. J. Clin. Oncol. 39, 11504 (2021).

14. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray T L, Diouf O, Wakefield A, Ghazi A, Gerken C, Yi Z, Ashoori A, Wu M, Liu H, Rooney C, Dotti G, Gee A, Su J, Kew Y, Baskin D, Zhang Y J, New P, Grilley B, Stojakovic M, Hicks J, Powell S Z, Brenner M K, Heslop H E, Robert Grossman R, Wels W S, Gottschalk S. HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial. JAMA Oncol. 2017;3:1094.

15. Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Kunkele A, Chang C A, Rawlings-Rhea S, Huang W, Seidel K, Albert C M, Pinto N, Gust J, Finn L S, Ojemann J G, Wright J, Orentas R J, Baldwin M, Gardner R A, Michael C Jensen M C, Park J R. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat Med. 2021;27:1544–52.

16. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg J R, Blanchard M S, Kilpatrick J, Simpson J, Kurien A, Priceman S J, Wang X, Harshbarger T L, D'Apuzzo M, Ressler J A, Jensen M C, Barish M E, Chen M, Portnow J, Forman S J, Badie B. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. New England J Med. 2016;375:2561–9.

17. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, Zhai Y, Bading J R, Ressler J A, Portnow J, D'Apuzzo M, Stephen J Forman S J, Jensen M C. Bioactivity and Safety of IL13Ralpha2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. Clin Cancer Res. 2015;21:4062–72.

18. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, Rossig C, Russell H V, Diouf O, Liu E, Liu H, Wu M-F, Gee A P, Mei Z, Rooney C M, Heslop H E, Brenner M K. Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6.

19. O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem S, Maloney E, Shen A, Isaacs R, Mohan S, Plesa G, Lacey S F, Navenot J-M, Zheng Z, Levine B L, Okada H, June C H, Brogdon J L, Maus M V. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:eaaa0984.

20. Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, Chu W, Jin Z, Yang X, Wang J, Lou J, Qian Q. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol. 2021;147:3725–34.

21. Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H, Yang Q, Wang Y, Han W. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell. 2018;9:838–47.

22. Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, Liu Y, Huang J, Lv H, Luo C, Feng K-C, Yang Q-M, Li X-L, Han W . CD133-directed car T cells for advanced metastasis malignancies: a phase i trial. Oncoimmunology (2018) 7:e1440169. doi: 10.1080/2162402X.2018.1440169

23. Qu CF, Li Y, Song YJ, Rizvi SMA, Raja C, Zhang D, J Samra, R Smith, A C Perkins, C Apostolidis, B J Allen. MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by (213)bi-c595 radioimmunoconjugate. Br J Cancer (2004) 91:2086–93. doi: 10.1038/sj.bjc.6602232

24. Argani P, Rosty C, Reiter RE, Wilentz RE, Murugesan SR, Leach SD, B Ryu, H G Skinner, M Goggins, E M Jaffee, C J Yeo, J L Cameron, S E Kern, R H Hruban. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res (2001) 61:4320–4.

25. Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, S R Murugesan, S D Leach, E Jaffee, C J Yeo, J L Cameron, S E Kern, R H Hruban. Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res (2001) 7:3862–8.

26. Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee C-CR, Restifo NP, Rosenberg S A. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med (2013) 210:1125–35. doi: 10.1084/jem.20130110

27. Whilding LM, Halim L, Draper B, Parente-Pereira AC, Zabinski T, Davies DM, Maher J. Car T-cells targeting the integrin αvβ6 and co-expressing the chemokine receptor cxcr2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers (Basel) (2019) 11:E674. doi: 10.3390/cancers11050674

28. Stroncek DF, Lee DW, Ren J, Sabatino M, Highfill S, Khuu H, Shah N N , Kaplan R N, Fry T J, Mackal C L. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells J. Transl. Med. 2017; 15:59

29. Gargett T, Yu W, Dotti G, Yvon ES, Christo SN, Hayball JD, Lewis I D, Brenner M K, Brown M P. GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade. Mol Ther. 2016;24:1135–49.

30. T. Chodon, B. Comin-Anduix, B. Chmielowski, R. C. Koya, Z. Wu, M. Auerbach, C. Ng, E. Avramis, E. Seja, A. Villanueva, T. A. McCannel, A. Ishiyama, J. Czernin, C. G. Radu, X. Wang, D. W. Gjertson, A. J. Cochran, K. Cornetta, D. J. L. Wong, P. Kaplan-Lefko, O. Hamid, W. Samlowski, P. A. Cohen, G. A. Daniels, B. Mukherji, L. Yang, J. A. Zack, D. B. Kohn, J. R. Heath, J. A. Glaspy, O. N. Witte, D. Baltimore, J. S. Economou, A. Ribas, Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 20, 2457–2465 (2014).

31. M. W. Rohaan, R. Gomez-Eerland, J. H. van den Berg, M. H. Geukes Foppen, M. van Zon, B. Raud, I. Jedema, S. Scheij, R. de Boer, N. A. M. Bakker, D. van den Broek, L. M. Pronk, L. G. Grijpink-Ongering, A. Sari, R. Kessels, M. van den Haak, H. A. Mallo, M. Karger, B. A. van de Wiel, C. L. Zuur, C. W. Duinkerken, F. Lalezari, J. V. van Thienen, S. Wilgenhof, C. U. Blank, J. H. Beijnen, B. Nuijen, T. N. Schumacher, J. B. A. G. Haanen, MART-1 TCR gene-modified peripheral blood T cells for the treatment of metastatic melanoma: A phase I/IIa clinical trial. Immuno-Oncol. Technol. 15, 100089 (2022).

32. T. S. Nowicki, B. Berent-Maoz, G. Cheung-Lau, R. R. Huang, X. Wang, J. Tsoi, P. Kaplan-Lefko, P. Cabrera, J. Tran, J. Pang, M. Macabali, I. P. Garcilazo, I. B. Carretero, A. Kalbasi, A. J. Cochran, C. S. Grasso, S. Hu-Lieskovan, B. Chmielowski, B. Comin-Anduix, A. Singh, A. Ribas, A pilot trial of the combination of transgenic NY-ESO-1-reactive adoptive cellular therapy with dendritic cell vaccination with or without Ipilimumab. Clin. Cancer Res. 25, 2096–2108 (2019).

33. Specht JM, Lee S, Turtle C, Berger C, Veatch J, Gooley T. Phase I study of immunotherapy for advanced ROR1+ malignancies with autologous ROR1-specific chimeric antigen receptor-modified (CAR)-T cells. Journal of Clinical Oncology. 2018;36:TPS79.

34. Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H, Han W. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci. 2016;59:468–79.

35. Oh DY, Henry JT, Baranda J, Dumbrava EE, Cohen E, Eskew JD, Belani R, McCaigue J, Namini H, Martin C, Murphy A, Ostertag E, Coronella J, Shedlock D, Rodriguez Rivera I I. Poseida therapeutics: development of an allogeneic CAR-T targeting MUC1-C (MUC1, cell surface associated, C-terminal) for epithelial derived tumors - Form 8-K. 2022.

36. Liu J, Li L, Luo N, Liu Q, Liu L, Chen D, Cheng Z, Xi X . Inflammatory signals induce MUC16 expression in ovarian cancer cells via NF-κB activation. Exp Ther Med. 2021;21(2):163.

37. Ponnusamy MP, Venkatraman G, Singh A P, Chauhan S C, Johansson S L, Jain M, Smith L, Davis J S, Remmenga S W, Batra S K. Expression of TAG-72 in ovarian cancer and its correlation with tumor stage and patient prognosis. Cancer Lett. 2007;251(2):247–57.

38. E Wrigley, A T McGown, J Rennison, R Swindell, D Crowther, T Starzynska, P L Stern. 5T4 oncofetal antigen expression in ovarian carcinoma. Int J Gynecol Cancer. 1995;5(4):269–74.

39. Fang J, Ding N, Guo X, Sun Y, Zhang Z, Xie B, Li Z, Wang H, Mao W, Lin Z, Qin F, Yuan M, Chu W, Qin H, Qian Q, Xu Q. alphaPD-1-mesoCAR-T cells partially inhibit the growth of advanced/refractory ovarian cancer in a patient along with daily apatinib. J Immunother Cancer. 2021;9:e001162.

40. Haas AR, Tanyi JL, O'Hara MH, Gladney WL, Lacey SF, Torigian DA, Soulen M C, Tian L, McGarvey M, Nelson A M, Farabaugh C S, Moon E, Levine B L, Melenhorst J J, Plesa G, June C H, Albelda S M, Beatty G L. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Mol Ther. 2019;27:1919–29.

41. Min IM, Shevlin E, Vedvyas Y, Zaman M, Wyrwas B, Scognamiglio T, Moore M D, Wang W, Park S, Park S, Panjwani S, Gray K D, Tassler A B, Zarnegar R, Fahey 3rd T J, Jin M M. CAR T therapy targeting icam-1 eliminates advanced human thyroid tumors. Clin Cancer Res (2017) 23:7569–83. doi: 10.1158/1078-0432.CCR-17-2008

42. Pasieka Z, Kuzdak K, Czyz W, Stepień H, Komorowski J. Soluble intracellular adhesion molecules (sicam-1, svcam-1) in peripheral blood of patients with thyroid cancer. Neoplasma (2004) 51:34–7.

43. Bhoj VG, Li L, Parvathaneni K, Zhang Z, Kacir S, Arhontoulis D, Zhou K, McGettigan-Croce B, Nunez-Cruz S, Gulendran G, Boesteanu A C, Johnson L, Feldman M D, Radaelli E, Mansfield K, Nasrallah M, Goydel R S, Peng H, Rader C, Michael C Milone M C, Siegel D L. Adoptive T cell immunotherapy for medullary thyroid carcinoma targeting gdnf family receptor alpha 4. Mol Ther Oncol (2021) 20:387–98. doi: 10.1016/j.omto.2021.01.012

44. Bhat AA, Nisar S, Maacha S, Carneiro-Lobo T C, Akhtar S, Siveen K S, Wani N A, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel J-C, Chand G, Frenneaux M P, Siddiqi M A, Bedognetti D, El-Rifai W, Muzafar A Macha M A, Haris M . Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer. 2021;20(1):2.

45. Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Addressing the obstacles of CAR T cell migration in solid tumors: wishing a heavy traffic. Crit Rev Biotechnol. 2022;42:1079–98.

46. Zhang BL, Qin D-Y, Mo Z-M, Li Y, Wei W, Wang Y-S, Wang W, Wei Y-Q . Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors. Sci China Life Sci. 2016;59(4):340–8.

47. Ager A. High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol. 2017;8:45.

48. Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM, Wang E, Young H A, Murphy P M, Hwu P. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther. 2002;13:1971–80.

49. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69.

50. Sun S, Hao H, Yang G, Zhang Y, Fu Y. Immunotherapy with CAR-modified T cells: toxicities and overcoming strategies. J Immunol Res. 2018;2018:2386187.

51. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

52. Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, Sanvito F, Ponzoni M, Doglioni C, Cristofori P, Traversari C, Bordignon C, Ciceri F, Ostuni R, Bonini C, Casucci M, Bondanza A . Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24(6):739–48.

53. Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, Halton E, Wang X, Senechal B, Purdon T, Cross JR, Liu H, Vachha B, Chen X, DeAngelis LM, Li D, Bernal Y, Gonen M, Wendel HG, Sadelain M, Brentjens RJ. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71.

54. Naghizadeh A, Tsao W-C, Cho J H, Xu H, Mohamed M, Li D, Xiong W, Metaxas D, Ramos C A, Liu D . In vitro machine learning-based CAR T immunological synapse quality measurements correlate with patient clinical outcomes. PLoS Comput Biol. 2022;18(3):e1009883.

55. Hou B, Tang Y, Li W, Zeng Q, Chang D. Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis. Disease Markers. 2019;2019:1–11.

56. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219–26.

57. Feng K-c, Guo Y-l, Liu Y, Dai HR, Wang Y, Lv HY, Huang J-H, Yang Q-M, Han W-D. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol. 2017;10:4.

58. Hegde M, Corder A, Chow KKH, Mukherjee M, Ashoori A, Kew Y, Zhang Y J, Baskin D S, Merchant F A, Brawley V S, Byrd T T, Krebs S, Wu M F, Liu H, Heslop H E, Gottschalk S, Yvon E, Ahmed N. Combinational Targeting Offsets Antigen Escape and Enhances Effector Functions of Adoptively Transferred T Cells in Glioblastoma. Mol Ther. 2013;21:2087–101.

59. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, Straathof K, Liu E, Durett AG, Grilley B, Liu H, Cruz CR, Savoldo B, Gee AP, Schindler J, Krance RA, Heslop HE, Spencer DM, Rooney CM, Brenner MK. Inducible apoptosis as a safety switch for adoptive cell therapy N. Engl. J. Med. 2011; 365:1673-1683

60. Meril S, Harush O, Reboh Y, Matikhina T, Barliya T, Cohen CJ. Targeting glycosylated antigens on cancer cells using siglec-7/9-based CAR T-cells. Mol Carcinog. 2020;59:713–23.

61. F Manfredi, B C Cianciotti, A Potenza, E Tassi, M Noviello, A Biondi, F Ciceri, C Bonini, E Ruggiero, TCR redirected T cells for cancer treatment: Achievements, hurdles, and goals. Front. Immunol. 11, 1689 (2020).

62. Tobin RP, Jordan KR, Kapoor P, Spongberg E, Davis D, Vorwald VM, Couts K L, Gao D, Smith D E, Borgers J S W, Robinson S, Amato C, Gonzalez R, Lewis K D, Robinson W A, Borges V F, McCarter M D. IL-6 and IL-8 Are Linked With Myeloid-Derived Suppressor Cell Accumulation and Correlate With Poor Clinical Outcomes in Melanoma Patients. Front Oncol. 2019;9:1223.

63. Thadi A, Khalili M, Morano W, Richard S, Katz S, Bowne W. Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis. Vaccines. 2018;6:54.

64. Chinnasamy D, Tran E, Yu Z, Morgan RA, Restifo NP, Rosenberg SA. Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res. 2013;73:3371–80.

65. Wang W, Ma Y, Li J, Shi HS, Wang LQ, Guo FC, Zhang J, Li D, Mo B-H, Wen F, Liu T, Liu Y-T, Wang Y-S, Wei Y-Q. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther. 2013;20:970–8.

66. Phanthaphol N, Somboonpatarakun C, Suwanchiwasiri K, Chieochansin T, Sujjitjoon J, Wongkham S, et al. Chimeric Antigen Receptor T Cells Targeting Integrin alphavbeta6 Expressed on Cholangiocarcinoma Cells. Front Oncol. 2021;11:657868.

67. Ignazio Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim E S, Ittmann M M, Marchetti D, Dotti G. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes Nat. Med. 2015; 21:524-529

68. Chmielewski M, Hombach A A, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma Immunol. Rev. 2014; 257:83-90

69. Rafiq S, Yeku O O, Jackson H J, Purdon T J, Leeuwen D G, Drakes D J, Song M, Miele M M, Li Z, Wang P, Yan S, Xiang J, Ma X, Seshan V E, Hendrickson R C, Liu C, Brentjens R J . Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo Nat. Biotechnol. 2018; 36:847-856

70. Chang Z L, Lorenzini M H, Chen X, Tran U, Bangayan N J, Chen Y Y Rewiring T-cell responses to soluble factors with chimeric antigen receptors Nat. Chem. Biol. 2018; 14:317-324

71. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor Nat. Biotechnol. 2018; 36:346-351

72. van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 14, 499–509 (2015).

73. C Imai, K Mihara, M Andreansky, I C Nicholson, C-H Pui, T L Geiger, D Campana. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia Leukemia. 2004; 18:676-684

74. Locke F L, Neelapu S S, Bartlett N L, Lekakis L J, Jacobson C A, Braunschweig I, Oluwole O O, Siddiqi T, Lin Y, Timmerman J M, Reagan P M, Bot A, Rossi J M, Sherman M, Navale L, Jiang Y, Aycock J S, Elias M, Wiezorek J S, Go W Y, Miklos D B. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL). Blood. 2017;130(Supplement 1):1547–1547.

75. Dinarello CA, Simon A, van der Meer JWM. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discovery. 2012;11:633–52.

76. Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front Oncol. 2020;10:188.

77. Pan Y, Yu Y, Wang X, Zhang T. Tumor-Associated Macrophages in Tumor Immunity. Front Immunol. 2020;11:583084.

78. Liu E, Marin D, Banerjee P, Macapinlac H A, Thompson P, Basar R, Kerbauy L N, Overman B, Thall P, Kaplan M, Nandivada V, Kaur I, Cortes A N, Cao K, Daher M, Hosing C, Cohen E N, Kebriaei P, Mehta R, Neelapu S, Nieto Y, Wang M, Wierda W, Keating M, Champlin R, Shpall E J, Rezvani K. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors N. Engl. J. Med. 2020; 382:545-553

79. Hartmann FJ, Babdor J, Gherardini PF, Amir ED, Jones K, Sahaf B, Marquez DM, Krutzik P, O'Donnell E, Sigal N, Maecker HT, Meyer E, Spitzer MH, Bendall SC. Comprehensive immune monitoring of clinical trials to advance human immunotherapy. Cell Rep. 2019;28(3):819-831.e4.

80. P J Hayden, C Roddie, P Bader, G W Basak, H Bonig, C Bonini, C Chabannon, F Ciceri, S Corbacioglu, R Ellard, F Sanchez-Guijo, U Jäger, M Hildebrandt, M Hudecek, M J Kersten, U Köhl, J Kuball, S Mielke, M Mohty, J Murray, A Nagler, J Rees, C Rioufol, R Saccardi, J A Snowden, J Styczynski, M Subklewe, C Thieblemont, M Topp, Á U Ispizua, D Chen, R Vrhovac, J G Gribben, N Kröger, H Einsele, I Yakoub-Agha . Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann Oncol. 2022;33(3):259–75.

81. Xu J, Wang Y, Shi J, Liu J, Li Q, Chen L. Combination therapy: A feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. Oncol Lett. 2018;16:2063–70.

Quality in Sport

Downloads

  • PDF

Published

2025-05-16

How to Cite

1.
KOWALCZUK, Dmytro, KASIANIK, Viktoryia, LAZITSKAYA , Darya, TURLEJ, Kamil, SOBCHYNSKYI, Mykola, MILASHEUSKAYA, Valeryia, MYRNYI, Andrii, KIEŁBASZEWSKA, Iga, SUROSZ, Natalia and MIRANIUK, Katsiaryna. Effectiveness, Limitations, and Future Perspectives of CAR-T Cell Therapy in Solid Tumor Treatment: A Narrative Review. Quality in Sport. Online. 16 May 2025. Vol. 41, p. 60162. [Accessed 28 June 2025]. DOI 10.12775/QS.2025.41.60162.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 41 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Dmytro Kowalczuk, Viktoryia Kasianik, Darya Lazitskaya , Kamil Turlej, Mykola Sobchynskyi, Valeryia Milasheuskaya, Andrii Myrnyi, Iga Kiełbaszewska, Natalia Surosz, Katsiaryna Miraniuk

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 78
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

CAR-T cells, solid tumors, tumor microenvironment, cancer immunotherapy
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop