Role of myosin heavy chains in adaptive and pathological processes – a systematic review
DOI:
https://doi.org/10.12775/QS.2025.41.60139Keywords
Myosin heavy chains, muscle adaptation, aging, endurance training, resistance trainingAbstract
Introduction: Myosin heavy chains (MHCs) are the core group of proteins that builds skeletal and cardiac muscle. Their characteristic is determined depending on MHC isoform, its percentage distribution and cross-sectional area of fibers it builds. These variables along with MHC gene expression undergo changes during adaptive and pathological processes.
Purpose: The aim of the article was to review significant studies on MHCs; summarize current knowledge in terms of adaptation, aging and pathological processes; provide interpretation and reach conclusions.
Methods: The literature review was conducted with topic-related articles found on platforms such as NCSI, PubMed, Google Scholar, using terms “MHC”, “MYH”, “Muscle adaptation”, “myosin heavy chains” and “skeletal muscle” in the searching process.
Current Knowledge: During adaptation to physical activity, changes in MHCs are dependant on the type of activity. Endurance training decreases expression of MYH4 gene and increases expression of MYH7. It results in transformation of MHC II towards MHC I and in stimulation of mitochondrial biogenesis. Resistance training favors MHC IIa and hypertrophy. Aging process is associated with increased expression of MHC I but lifelong exercises help to preserve favorable fiber profile. MHC ratios and gene expressions are also altered in pathological conditions, such as obesity, neoplasms and heart disorders. MHCs play a significant role in fracture healing, and their serum levels may reflect soft tissue injuries.
Conclusions: MHC isoform distribution is associated with muscle adaptation and dysfunction. Understanding its regulation offers new perspectives in disease prevention, rehabilitation, and therapeutic strategies for muscle and cardiovascular health.
References
1. Kalakoutis M, Di Giulio I, Douiri A, Ochala J, Harridge SDR, Woledge RC. Methodological considerations in measuring specific force in human single skinned muscle fibres. Acta physiologica (Oxford, England) [Internet]. 2021 Nov;233(3):e13719. Available from: https://pubmed.ncbi.nlm.nih.gov/34286921/.
doi: 10.1111/apha.13719
2. Sawano S, Mizunoya W. History and development of staining methods for skeletal muscle fiber types. Histology and Histopathology [Internet]. 2022 Jun 1;37(6):493–503. Available from: https://pubmed.ncbi.nlm.nih.gov/35043970/.
doi: 10.14670/HH-18-422
3. Schiaffino S. Muscle fiber type diversity revealed by anti‐myosin heavy chain antibodies. The FEBS Journal. 2018 May 24;285(20):3688–94.
doi: 10.1111/febs.14502
4. Nuzzo JL. Sex differences in skeletal muscle fiber types: A meta-analysis. Clinical Anatomy (New York, NY) [Internet]. 2023 Jul 10;37(1). Available from: https://pubmed.ncbi.nlm.nih.gov/37424380/. doi: 10.1002/ca.24091
5. Vikne H, Strøm V, Pripp AH, Gjøvaag T. Human skeletal muscle fiber type percentage and area after reduced muscle use: A systematic review and meta‐analysis. Scandinavian Journal of Medicine & Science in Sports. 2020 May 4;30(8):1298–317. doi: 10.1111/sms.13675
6. Queeno SR, Reiser PJ, Orr CM, Capellini TD, Sterner KN, O’Neill MC. Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology [Internet]. 2023 Jul 1 [cited 2024 Jun 16];281:111415. Available from: https://www.sciencedirect.com/science/article/pii/S109564332300048X.
doi: 10.1016/j.cbpa.2023.111415
7. Paula Nieto Morales, Coons AN, Koopman AJ, Patel S, P. Bryant Chase, Parvatiyar MS, et al. Post‐translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton. 2024 Apr 8;
doi: 10.1002/cm.21857
8. Nayak A, Amrute‐Nayak M. SUMO system – a key regulator in sarcomere organization. The FEBS Journal. 2020 Mar 13;287(11):2176–90.
doi: 10.1111/febs.15263
9. Serrano N, Hyatt JK, Houmard JA, Murgia M, Katsanos CS. Muscle Fiber Phenotype: A Culprit of Abnormal Metabolism and Function in Skeletal Muscle of Humans with Obesity. American Journal of Physiology-endocrinology and Metabolism. 2023 Oct 25;
doi: 10.1152/ajpendo.00190.2023
10. Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radical Biology and Medicine. 2024 Mar 1;213:409–25.
doi: 10.1016/j.freeradbiomed.2024.01.036
11. Li J, Zhang S, Li C, Zhang X, Shan Y, Zhang Z, et al. Endurance exercise-induced histone methylation modification involved in skeletal muscle fiber type transition and mitochondrial biogenesis. Scientific Reports [Internet]. 2024 Sep 10;14(1). Available from: https://www.nature.com/articles/s41598-024-72088-6
doi: 10.1038/s41598-024-72088-6
12. Wen W, Chen X, Huang Z, Chen D, Yu B, He J, et al. Lycopene increases the proportion of slow-twitch muscle fiber by AMPK signaling to improve muscle anti-fatigue ability. The Journal of Nutritional Biochemistry. 2021 Aug;94:108750.
doi: 10.1016/j.jnutbio.2021.108750
13. Skoglund E, Per Stål, Lundberg TR, Gustafsson T, Tesch PA, Thornell LE. Skeletal muscle morphology, satellite cells, and oxidative profile in relation to physical function and lifelong endurance training in very old men. Journal of Applied Physiology. 2022 Dec 22;134(2):264–75.
doi: 10.1152/japplphysiol.00343.2022
14. Plotkin DL, Roberts MD, Haun CT, Schoenfeld BJ. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports [Internet]. 2021 Sep 1;9(9):127. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8473039/
doi: 10.3390/sports9090127
15. Lawson D, Vann C, Schoenfeld BJ, Haun C. Beyond Mechanical Tension: A Review of Resistance Exercise-Induced Lactate Responses & Muscle Hypertrophy. Journal of Functional Morphology and Kinesiology. 2022 Oct 4;7(4):81.
doi: 10.3390/jfmk7040081
16. Carroll KM, Bazyler CD, Bernards JR, Taber CB, Stuart CA, DeWeese BH, et al. Skeletal Muscle Fiber Adaptations Following Resistance Training Using Repetition Maximums or Relative Intensity. Sports [Internet]. 2019 Jul 11 [cited 2019 Aug 10];7(7):169. Available from: https://www.mdpi.com/2075-4663/7/7/169/htm
doi: 10.3390/sports7070169
17. Martinez‐Canton M, Gallego‐Selles A, Gelabert‐Rebato M, Martin‐Rincon M, Pareja‐Blanco F, Rodriguez‐Rosell D, et al. Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scandinavian Journal of Medicine & Science in Sports. 2020 Oct 2;31(1):91–103.
doi: 10.1111/sms.13828
18. Machek SB, Hwang PS, Cardaci TD, Wilburn DT, Bagley JR, Blake DT, et al. Myosin Heavy Chain Composition, Creatine Analogues, and the Relationship of Muscle Creatine Content and Fast-Twitch Proportion to Wilks Coefficient in Powerlifters. Journal of Strength and Conditioning Research. 2020 Aug 27;34(11):3022–30.
doi: 10.1519/JSC.0000000000003804
19. Tiril Tøien, Jakob Lindberg Nielsen, Ole Kristian Berg, Mathias Forsberg Brobakken, Stian Kwak Nyberg, Espedal L, et al. The impact of life-long strength versus endurance training on muscle fiber morphology2 and phenotype composition in older men. Journal of Applied Physiology. 2023 Dec 1;135(6):1360–71.
doi: 10.1152/japplphysiol.00208.2023
20. Pandorf CE, Haddad F, Tomasz Owerkowicz, Carroll LP, Baldwin KM, Adams GR. Regulation of myosin heavy chain antisense long noncoding RNA in human vastus lateralis in response to exercise training. AJP Cell Physiology. 2020 Mar 4;318(5):C931–42.
doi: 10.1152/ajpcell.00166.2018
21. Yeon M, Choi H, Chun KH, Lee JH, Jun HS. Gomisin G improves muscle strength by enhancing mitochondrial biogenesis and function in disuse muscle atrophic mice. Biomedicine & Pharmacotherapy. 2022 Jul 14;153:113406–6.
doi: 10.1016/j.biopha.2022.113406
22. Seo DY, Kwak HB, Kim AH, Park SH, Heo JW, Kim HK, et al. Cardiac adaptation to exercise training in health and disease. Pflügers Archiv - European Journal of Physiology. 2019 Apr 23;472.
doi: 10.1007/s00424-019-02266-3
23. Chen H, Chen C, Spanos M, Li G, Lu R, Bei Y, et al. Exercise training maintains cardiovascular health: signaling pathways involved and potential therapeutics. Signal Transduction and Targeted Therapy [Internet]. 2022 Sep 1;7(1). Available from: https://www.nature.com/articles/s41392-022-01153-1
24. Jeon Y, Choi J, Kim HJ, Lee H, Lim JY, Choi SJ. Sex- and fiber-type-related contractile properties in human single muscle fiber. Journal of Exercise Rehabilitation. 2019 Aug 28;15(4):537–45.
doi: 10.12965/jer.1938336.168
25. Serrano N, Colenso-Semple LM, Lazauskus KK, Siu JW, Bagley JR, Lockie RG, et al. Extraordinary fast-twitch fiber abundance in elite weightlifters. Eynon N, editor. PLOS ONE [Internet]. 2019 Mar 27;14(3):e0207975. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207975
doi: 10.1371/journal.pone.0207975
26. Grosicki GJ, Zepeda CS, Sundberg CW. Single muscle fibre contractile function with ageing. The Journal of Physiology. 2022 Nov 9;600(23):5005–26.
doi: 10.1113/JP282298
27. ROZAND V, SUNDBERG CW, HUNTER SK, SMITH AE. Age-related Deficits in Voluntary Activation: A Systematic Review and Meta-analysis. Medicine & Science in Sports & Exercise. 2019 Nov 4;52(3):549–60.
doi: 10.1249/MSS.0000000000002179
28. Wrucke DJ, Kuplic A, Adam MD, Hunter SK, Sundberg CW. Neural and muscular contributions to the age-related differences in peak power of the knee extensors in men and women. Journal of applied physiology (Bethesda, Md : 1985) [Internet]. 2024 Jan;137(4):1021–40. Available from: https://pubmed.ncbi.nlm.nih.gov/39205638/
doi: 10.1152/japplphysiol.00773.2023
29. Lee C, Woods PC, Paluch AE, Miller MS. Effects of age on human skeletal muscle: A systematic review and meta-analysis of myosin heavy chain isoform protein expression, fiber size and distribution. American journal of physiology Cell physiology [Internet]. 2024 Jul;10.1152/ajpcell.00347.2024. Available from: https://pubmed.ncbi.nlm.nih.gov/39374077/
doi: 10.1152/ajpcell.00347.2024
30. Grosicki GJ, Gries KJ, Minchev K, Raue U, Chambers TL, Begue G, et al. Single muscle fibre contractile characteristics with lifelong endurance exercise. The Journal of Physiology. 2021 Jun 15;599(14):3549–65.
doi: 10.1113/JP281666
31. Moro T, Brightwell CR, Volpi E, Rasmussen BB, Fry CS. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. Journal of Applied Physiology (Bethesda, Md: 1985) [Internet]. 2020 Apr 1;128(4):795–804. Available from: https://pubmed.ncbi.nlm.nih.gov/32134710/
doi: 10.1152/japplphysiol.00723.2019
32. Cereda E, Pisati R, Rondanelli M, Caccialanza R. Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients. 2022 Apr 6;14(7):1524.
doi: 10.3390/nu14071524
33. Angelos Kaspiris, Hadjimichael AC, Vasiliadis ES, Papachristou DJ, Giannoudis PV, Panagiotopoulos EC. Therapeutic Efficacy and Safety of Osteoinductive Factors and Cellular Therapies for Long Bone Fractures and Non-Unions: A Meta-Analysis and Systematic Review. Journal of Clinical Medicine. 2022 Jul 4;11(13):3901–1.
doi: 10.3390/jcm11133901
34. Deguchi H, Morla S, Griffin JH. Novel blood coagulation molecules: Skeletal muscle myosin and cardiac myosin. Journal of thrombosis and haemostasis : JTH [Internet]. 2021 Jan;19(1):7–19. Available from: https://pubmed.ncbi.nlm.nih.gov/32920971/
doi: 10.1111/jth.15097
35. Deguchi H, Sinha RK, Marchese P, Ruggeri ZM, Zilberman-Rudenko J, McCarty OJT, et al. Prothrombotic skeletal muscle myosin directly enhances prothrombin activation by binding factors Xa and Va. Blood [Internet]. 2016 Jun;128(14):1870–8. Available from: https://pubmed.ncbi.nlm.nih.gov/27421960/
doi: 10.1182/blood-2016-03-707679
36. Wa Q, Luo Y, Tang Y, Song J, Zhang P, Xitao Linghu, et al. Mesoporous bioactive glass-enhanced MSC-derived exosomes promote bone regeneration and immunomodulation in vitro and in vivo. Journal of Orthopaedic Translation [Internet]. 2024 Oct 30 [cited 2024 Nov 24];49:264–82. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11550139/#sec2
doi: 10.1016/j.jot.2024.09.009
37. Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, et al. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society [Internet]. 2004 May 1 [cited 2020 Apr 27];22(3):526–34. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15099631
doi: 10.1016/j.orthres.2003.10.005
38. He H, Wang L, Cai X, Wang Q, Liu P, Xiao J. Biomimetic collagen composite matrix-hydroxyapatite scaffold induce bone regeneration in critical size cranial defects. Materials & Design. 2023 Dec 1;236:112510–0.
doi: 10.1016/j.matdes.2023.112510
39. Jo S, Lee SH, Jeon C, Jo HR, You YJ, Lee JK, et al. Myosin heavy chain 2 (MYH2) expression in hypertrophic chondrocytes of soft callus provokes endochondral bone formation in fracture. Life Sciences. 2023 Dec;334:122204.
doi: 10.1016/j.lfs.2023.122204
40. Arai Y, Choi B, Kim BJ, Park S, Park H, Moon JJ, et al. Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop. Acta biomaterialia [Internet]. 2021 Autumn;125:219–30. Available from: https://pubmed.ncbi.nlm.nih.gov/33677160/
doi: 10.1016/j.actbio.2021.02.042
41. Onuoha GN, Alpar EK, Laprade M, Rama D, Pau B. Effects of bone fracture and surgery on plasma myosin heavy chain fragments of skeletal muscle. Clin Invest Med. 1999 Oct;22(5):180-4. PMID: 10579056.
42. Erlacher P, Lercher A, Juergen Falkensammer, Nassonov EL, Михаил Самсонов, Shtutman VZ, et al. Cardiac troponin and β-type myosin heavy chain concentrations in patients with polymyositis or dermatomyositis. Clinica Chimica Acta. 2001 Apr 1;306(1-2):27–33.
doi: 10.1016/s0009-8981(01)00392-8
43. Thomas KA, Gibbons MC, Lane JG, Singh A, Ward SR, Engler AJ. Rotator cuff tear state modulates self-renewal and differentiation capacity of human skeletal muscle progenitor cells. Journal of Orthopaedic Research. 2016 Oct 16;35(8):1816–23.
doi: 10.1002/jor.23453
44. Onuoha GN, Alpar EKaya, Laprade M, Rama D, Pau B. Levels of Myosin Heavy Chain Fragment in Patients with Tissue Damage. Archives of Medical Research [Internet]. 2001 Mar 26;32(1):27–9. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0188440900002563
doi: 10.1016/s0188-4409(00)00256-3
45. Biering-Sørensen B, Kristensen IB, Kjaer M, Biering-Sørensen F. Muscle after spinal cord injury. Muscle & Nerve. 2009 Oct;40(4):499–519.
doi: 10.1002/mus.21391
46. Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord. 1997 Feb;35(2):86–91.
doi: 10.1038/sj.sc.3100364
47. de Frutos F, Ochoa JP, Navarro-Peñalver M, Baas A, Bjerre JV, Zorio E, et al. Natural History of MYH7-Related Dilated Cardiomyopathy. Journal of the American College of Cardiology [Internet]. 2022 Oct 11;80(15):1447–61. Available from: https://pubmed.ncbi.nlm.nih.gov/36007715/
doi: 10.1016/j.jacc.2022.07.023
48. Velicki L, Jakovljevic DG, Preveden A, Golubovic M, Bjelobrk M, Ilic A, et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. BMC Cardiovascular Disorders. 2020 Dec;20(1).
doi: 10.1186/s12872-020-01807-4
49. Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circulation Research. 2017 Sep 15;121(7):749–70.
doi: 10.1161/CIRCRESAHA.117.311059
50. Ritter A, Leonard J, Gray C, Izumi K, Levinson K, Nair DR, et al. MYH7 variants cause complex congenital heart disease. American Journal of Medical Genetics Part A. 2022 May 2;188(9):2772–6.
doi: 10.1002/ajmg.a.62766
51. Kim OH, Kim J, Kim Y, Lee S, Lee BH, Kim BJ, et al. Exploring novel MYH7 gene variants using in silico analyses in Korean patients with cardiomyopathy. BMC Medical Genomics. 2024 Sep 5;17(1).
doi: 10.1186/s12920-024-02000-8
52. Harper AR, Bowman M, Jesse B.G. Hayesmoore, Sage H, Salatino S, Blair E, et al. Reevaluation of the South Asian MYBPC3 Δ25bp Intronic Deletion in Hypertrophic Cardiomyopathy. Circulation Genomic and Precision Medicine. 2020 Jun 1;13(3).
doi: 10.1161/CIRCGEN.119.002783
53. Toepfer CN, Garfinkel AC, Venturini G, Wakimoto H, Repetti G, Alamo L, et al. Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy. Circulation. 2020 Mar 10;141(10):828–42.
doi: 10.1161/CIRCULATIONAHA.119.042339
54. Mahdi Hesaraki, Bora U, Pahlavan S, Salehi N, Mousavi SA, Barekat M, et al. A Novel Missense Variant in Actin Binding Domain of MYH7 Is Associated With Left Ventricular Noncompaction. Frontiers in Cardiovascular Medicine. 2022 Apr 8;9.
doi: 10.3389/fcvm.2022.839862
55. Li Y, Pan Y, Yang X, Wang Y, Liu B, Zhang Y, et al. Unveiling the enigmatic role of MYH9 in tumor biology: a comprehensive review. Cell Communication and Signaling. 2024 Aug 27;22(1).
doi: 10.1186/s12964-024-01781-w
56. Gou Z, Zhang D, Cao H, Li Y, Li Y, Zhao Z, et al. Exploring the nexus between MYH9 and tumors: novel insights and new therapeutic opportunities. Frontiers in Cell and Developmental Biology. 2024 Aug 1;12.
doi: 10.3389/fcell.2024.1421763
57. Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH. Herpes Virus Fusion and Entry: A Story with Many Characters. Viruses [Internet]. 2012 May 10 [cited 2021 Jan 24];4(5):800–32. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386629/
doi: 10.3390/v4050800
58. Chen J, Fan J, Chen Z, Zhang M, Peng H, Liu J, et al. Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells. Proceedings of the National Academy of Sciences. 2021 Dec 6;118(50).
doi: 10.1073/pnas.2111011118
59. Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, et al. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomedicine & Pharmacotherapy [Internet]. 2024 Feb 1 [cited 2024 Mar 3];171:116118. Available from: https://www.sciencedirect.com/science/article/pii/S0753332223019169
doi: 10.1016/j.biopha.2023.116118
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tomasz Busłowicz, Anna Kler, Aleksandra Grzesica, Martyna Malerczyk, Dagmara Gaweł-Dąbrowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 97
Number of citations: 0