Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Gut Microbiota and Gut-Brain Axis in Health and Disease A Narrative Review
  • Home
  • /
  • Gut Microbiota and Gut-Brain Axis in Health and Disease A Narrative Review
  1. Home /
  2. Archives /
  3. Vol. 41 (2025) /
  4. Medical Sciences

Gut Microbiota and Gut-Brain Axis in Health and Disease A Narrative Review

Authors

  • Jakub Wasiak Central Clinical Hospital of Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland https://orcid.org/0000-0002-5973-6077
  • Kacper Zielonka Maria Skłodowska-Curie Provincial Specialist Hospital in Zgierz, ul. Parzęczewska 35, 95-100 Zgierz, Poland https://orcid.org/0009-0009-5149-7786
  • Bartosz Dądela Maria Skłodowska-Curie Provincial Specialist Hospital in Zgierz, ul. Parzęczewska 35, 95-100 Zgierz, Poland https://orcid.org/0009-0003-2408-9812
  • Marcin Markowski Medical University of Łódź, al. Kościuszki 4, 90-419, Łódź, Poland https://orcid.org/0009-0006-5497-1138
  • Natalia Śliwa Maria Skłodowska-Curie Provincial Specialist Hospital in Zgierz, ul. Parzęczewska 35, 95-100 Zgierz, Poland https://orcid.org/0009-0000-9829-1915
  • Emilia Maria Majewska Dr. Tytus Chałubiński Specialist Hospital in Radom, ul. Adolfa Tochtermana 1, 26-610 Radom, Poland https://orcid.org/0009-0009-3043-1104
  • Eliza Kawalska Hospital of Our Lady of Perpetual Help in Wołomin, ul. Gdyńska 1/3, 05-200 Wołomin, Poland https://orcid.org/0009-0004-8244-6459
  • Szymon Gnitecki Provincial Multi-Specialist Center of Oncology and Traumatology M. Copernicus in Łódź, ul. Pabianicka 62, 93-513 Łódź. https://orcid.org/0009-0007-6839-6207
  • Szymon Janczura Central Clinical Hospital of Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland https://orcid.org/0009-0009-4214-4014
  • Maciej Borowski Central Clinical Hospital of Medical University of Lodz, ul. Pomorska 251, 92-213 Łódź, Poland https://orcid.org/0009-0001-0789-804X

DOI:

https://doi.org/10.12775/QS.2025.41.60102

Keywords

microbiota, gut-brain axis, SCFAs, dysbiosis

Abstract

Microbiota, a composition of trillions of microorganisms, plays essential roles in metabolism, immunity, and gut-brain axis connection. It helps in the digestion and production of valuable metabolites and keeps intestinal integrity intact. A balanced microbiota or eubiosis supports health; dysbiosis causes leaky gut syndrome, systemic inflammation, and chronic diseases.
Therefore, the purpose of this review is to provide an analysis of the microbiota-gut-brain axis (GBA), as well as important microbial metabolites like trimethylamine N-oxide (TMAO), short chain fatty acids (SCFAs), and their implications concerning health and disease states. A comprehensive search of references related to microbiota was conducted on PubMed using the following search terms: “microbiota, gut-brain axis, dysbiosis, eubiosis, microbiota composition, microbial metabolites”.
Major metabolites such as SCFAs help with the regulation of immune functions, act as protectors of the blood-brain barrier, and are known to support neuroprotection, while deleterious substances such as TMAO find association with cardiovascular diseases.
Dysbiosis in the gut finds association with various chronic diseases such as type 2 diabetes, hypertension, and neurodegenerative disorders. Changes in microbial composition disrupt metabolic processes and provoke systemic inflammation. A better understanding of these mechanisms would facilitate the early detection of diseases based on the recognition of specific bacterial shifts and/or metabolite imbalances. Microbiota-health-improving relationships are still being explored, demonstrating the need for additional studies aimed at developments of specific treatments for disease prevention and treatment.

References

Arentsen, T., Qian, Y., Gkotzis, S., Femenia, T., Wang, T., Udekwu, K., Forssberg, H., & Diaz Heijtz, R. (2017). The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Molecular Psychiatry, 22(2), 257–266. https://doi.org/10.1038/mp.2016.182

B. Estrela, A., & Abraham, W.-R. (2011). Adenosine in the Inflamed Gut: A Janus Faced Compound. Current Medicinal Chemistry, 18(18), 2791–2815. https://doi.org/10.2174/092986711796011274

Barrientos-Durán, A., Fuentes-López, A., de Salazar, A., Plaza-Díaz, J., & García, F. (2020). Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients, 12(2), 419. https://doi.org/10.3390/nu12020419

Beam, A., Clinger, E., & Hao, L. (2021). Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients, 13(8), 2795. https://doi.org/10.3390/nu13082795

Berkes, J. (2003). Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut, 52(3), 439–451. https://doi.org/10.1136/gut.52.3.439

Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.-D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology, 14(1), 189. https://doi.org/10.1186/s12876-014-0189-7

Boini, K. M., Hussain, T., Li, P.-L., & Koka, S. S. (2017). Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cellular Physiology and Biochemistry, 44(1), 152–162. https://doi.org/10.1159/000484623

Campaniello, D., Corbo, M. R., Sinigaglia, M., Speranza, B., Racioppo, A., Altieri, C., & Bevilacqua, A. (2022). How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients, 14(12), 2456. https://doi.org/10.3390/nu14122456

Cavin, J.-B., Cuddihey, H., MacNaughton, W. K., & Sharkey, K. A. (2020). Acute regulation of intestinal ion transport and permeability in response to luminal nutrients: the role of the enteric nervous system. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318(2), G254–G264. https://doi.org/10.1152/ajpgi.00186.2019

Cecil, J. D., O’Brien-Simpson, N. M., Lenzo, J. C., Holden, J. A., Singleton, W., Perez-Gonzalez, A., Mansell, A., & Reynolds, E. C. (2017). Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.01017

Chou, H.-H., Chien, W.-H., Wu, L.-L., Cheng, C.-H., Chung, C.-H., Horng, J.-H., Ni, Y.-H., Tseng, H.-T., Wu, D., Lu, X., Wang, H.-Y., Chen, P.-J., & Chen, D.-S. (2015). Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proceedings of the National Academy of Sciences, 112(7), 2175–2180. https://doi.org/10.1073/pnas.1424775112

Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3

Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412

De Angelis, M., Francavilla, R., Piccolo, M., De Giacomo, A., & Gobbetti, M. (2015). Autism spectrum disorders and intestinal microbiota. Gut Microbes, 6(3), 207–213. https://doi.org/10.1080/19490976.2015.1035855

De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I., Cristofori, F., Guerzoni, M. E., Gobbetti, M., & Francavilla, R. (2013). Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE, 8(10), e76993. https://doi.org/10.1371/journal.pone.0076993

Denman, C. R., Park, S. M., & Jo, J. (2023). Gut-brain axis: gut dysbiosis and psychiatric disorders in Alzheimer’s and Parkinson’s disease. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1268419

De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2014a). Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 156(1–2), 84–96. https://doi.org/10.1016/j.cell.2013.12.016

De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2014b). Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 156(1–2), 84–96. https://doi.org/10.1016/j.cell.2013.12.016

Dicks, L. M. T. (2022a). Gut Bacteria and Neurotransmitters. Microorganisms, 10(9), 1838. https://doi.org/10.3390/microorganisms10091838

Dicks, L. M. T. (2022b). Gut Bacteria and Neurotransmitters. Microorganisms, 10(9), 1838. https://doi.org/10.3390/microorganisms10091838

Dienel, S. J., Enwright, J. F., Hoftman, G. D., & Lewis, D. A. (2020). Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: Disease effects differ across anatomical levels of resolution. Schizophrenia Research, 217, 86–94. https://doi.org/10.1016/j.schres.2019.06.003

Dinan, T. G., & Cryan, J. F. (2015). The impact of gut microbiota on brain and behaviour. Current Opinion in Clinical Nutrition and Metabolic Care, 18(6), 552–558. https://doi.org/10.1097/MCO.0000000000000221

Dinan, T. G., Stilling, R. M., Stanton, C., & Cryan, J. F. (2015). Collective unconscious: How gut microbes shape human behavior. Journal of Psychiatric Research, 63, 1–9. https://doi.org/10.1016/j.jpsychires.2015.02.021

Dominguez-Bello, M. G., De Jesus-Laboy, K. M., Shen, N., Cox, L. M., Amir, A., Gonzalez, A., Bokulich, N. A., Song, S. J., Hoashi, M., Rivera-Vinas, J. I., Mendez, K., Knight, R., & Clemente, J. C. (2016). Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature Medicine, 22(3), 250–253. https://doi.org/10.1038/nm.4039

Duscha, A., Gisevius, B., Hirschberg, S., Yissachar, N., Stangl, G. I., Dawin, E., Bader, V., Haase, S., Kaisler, J., David, C., Schneider, R., Troisi, R., Zent, D., Hegelmaier, T., Dokalis, N., Gerstein, S., Del Mare-Roumani, S., Amidror, S., Staszewski, O., … Haghikia, A. (2020). Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell, 180(6), 1067-1080.e16. https://doi.org/10.1016/j.cell.2020.02.035

Dwiyanto, J., Hussain, M. H., Reidpath, D., Ong, K. S., Qasim, A., Lee, S. W. H., Lee, S. M., Foo, S. C., Chong, C. W., & Rahman, S. (2021). Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. Scientific Reports, 11(1), 2618. https://doi.org/10.1038/s41598-021-82311-3

Finegold, S. M., Downes, J., & Summanen, P. H. (2012). Microbiology of regressive autism. Anaerobe, 18(2), 260–262. https://doi.org/10.1016/j.anaerobe.2011.12.018

Fitzstevens, J. L., Smith, K. C., Hagadorn, J. I., Caimano, M. J., Matson, A. P., & Brownell, E. A. (2017). Systematic Review of the Human Milk Microbiota. Nutrition in Clinical Practice, 32(3), 354–364. https://doi.org/10.1177/0884533616670150

Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., Arumugam, M., Kristiansen, K., Yvonne Voigt, A., Vestergaard, H., Hercog, R., Igor Costea, P., Roat Kultima, J., Li, J., Jørgensen, T., … Pedersen, O. (2015a). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://doi.org/10.1038/nature15766

Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., Arumugam, M., Kristiansen, K., Yvonne Voigt, A., Vestergaard, H., Hercog, R., Igor Costea, P., Roat Kultima, J., Li, J., Jørgensen, T., … Pedersen, O. (2015b). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://doi.org/10.1038/nature15766

Furness, J. B. (2012). The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology & Hepatology, 9(5), 286–294. https://doi.org/10.1038/nrgastro.2012.32

Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., Takahashi, M., Fukuda, N. N., Murakami, S., Miyauchi, E., Hino, S., Atarashi, K., Onawa, S., Fujimura, Y., Lockett, T., … Ohno, H. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446–450. https://doi.org/10.1038/nature12721

Ge, P., Duan, H., Tao, C., Niu, S., Hu, Y., Duan, R., Shen, A., Sun, Y., & Sun, W. (2023a). TMAO Promotes NLRP3 Inflammasome Activation of Microglia Aggravating Neurological Injury in Ischemic Stroke Through FTO/IGF2BP2. Journal of Inflammation Research, Volume 16, 3699–3714. https://doi.org/10.2147/JIR.S399480

Ge, P., Duan, H., Tao, C., Niu, S., Hu, Y., Duan, R., Shen, A., Sun, Y., & Sun, W. (2023b). TMAO Promotes NLRP3 Inflammasome Activation of Microglia Aggravating Neurological Injury in Ischemic Stroke Through FTO/IGF2BP2. Journal of Inflammation Research, Volume 16, 3699–3714. https://doi.org/10.2147/JIR.S399480

González Hernández, M. A., Canfora, E. E., Jocken, J. W. E., & Blaak, E. E. (2019). The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients, 11(8), 1943. https://doi.org/10.3390/nu11081943

Gonzalez-Santana, A., & Diaz Heijtz, R. (2020). Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. Trends in Molecular Medicine, 26(8), 729–743. https://doi.org/10.1016/j.molmed.2020.05.003

Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumont, M., Van Treuren, W., Knight, R., Bell, J. T., Spector, T. D., Clark, A. G., & Ley, R. E. (2014). Human Genetics Shape the Gut Microbiome. Cell, 159(4), 789–799. https://doi.org/10.1016/j.cell.2014.09.053

Gubert, C., Kong, G., Renoir, T., & Hannan, A. J. (2020). Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiology of Disease, 134, 104621. https://doi.org/10.1016/j.nbd.2019.104621

Hao, C., Gao, Z., Liu, X., Rong, Z., Jia, J., Kang, K., Guo, W., & Li, J. (2020). Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner. Scientific Reports, 10(1), 19917. https://doi.org/10.1038/s41598-020-77085-z

Hemarajata, P., & Versalovic, J. (2013a). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51. https://doi.org/10.1177/1756283X12459294

Hemarajata, P., & Versalovic, J. (2013b). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51. https://doi.org/10.1177/1756283X12459294

Hu, S., Kuwabara, R., de Haan, B. J., Smink, A. M., & de Vos, P. (2020). Acetate and Butyrate Improve β-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. International Journal of Molecular Sciences, 21(4), 1542. https://doi.org/10.3390/ijms21041542

Huang, Y., Wang, Y. F., Miao, J., Zheng, R. F., & Li, J. Y. (2024). Short-chain fatty acids: Important components of the gut-brain axis against AD. Biomedicine & Pharmacotherapy, 175, 116601. https://doi.org/10.1016/j.biopha.2024.116601

Janeiro, M., Ramírez, M., Milagro, F., Martínez, J., & Solas, M. (2018). Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10(10), 1398. https://doi.org/10.3390/nu10101398

Kealy, J., Greene, C., & Campbell, M. (2020). Blood-brain barrier regulation in psychiatric disorders. Neuroscience Letters, 726, 133664. https://doi.org/10.1016/j.neulet.2018.06.033

Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2017). Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 112, 399–412. https://doi.org/10.1016/j.neuropharm.2016.07.002

Kinashi, Y., & Hase, K. (2021a). Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.673708

Kinashi, Y., & Hase, K. (2021b). Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.673708

Leeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 11(12), 2862. https://doi.org/10.3390/nu11122862

Lever, M., George, P. M., Slow, S., Bellamy, D., Young, J. M., Ho, M., McEntyre, C. J., Elmslie, J. L., Atkinson, W., Molyneux, S. L., Troughton, R. W., Frampton, C. M., Richards, A. M., & Chambers, S. T. (2014). Betaine and Trimethylamine-N-Oxide as Predictors of Cardiovascular Outcomes Show Different Patterns in Diabetes Mellitus: An Observational Study. PLoS ONE, 9(12), e114969. https://doi.org/10.1371/journal.pone.0114969

Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124(4), 837–848. https://doi.org/10.1016/j.cell.2006.02.017

Li, D., Yu, S., Long, Y., Shi, A., Deng, J., Ma, Y., Wen, J., Li, X., Liu, S., Zhang, Y., Wan, J., Li, N., & Ao, R. (2022). Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.985378

Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., Zhang, W., Weldon, R., Auguste, K., Yang, L., Liu, X., Chen, L., Yang, X., Zhu, B., & Cai, J. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5(1), 14. https://doi.org/10.1186/s40168-016-0222-x

Li, Z., Chen, Y., & Ke, H. (2024). Investigating the Causal Relationship Between Gut Microbiota and Crohn’s Disease: A Mendelian Randomization Study. Gastroenterology, 166(2), 354–355. https://doi.org/10.1053/j.gastro.2023.08.047

Liu, Y., Yu, J., Yang, Y., Han, B., Wang, Q., & Du, S. (2024). Investigating the causal relationship of gut microbiota with GERD and BE: a bidirectional mendelian randomization. BMC Genomics, 25(1), 471. https://doi.org/10.1186/s12864-024-10377-0

Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology, 160(5), 1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066

Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021a). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1), 37–49. https://doi.org/10.1017/S0029665120006916

Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021b). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1), 37–49. https://doi.org/10.1017/S0029665120006916

McCallum, G., & Tropini, C. (2024). The gut microbiota and its biogeography. Nature Reviews Microbiology, 22(2), 105–118. https://doi.org/10.1038/s41579-023-00969-0

Mente, A., Chalcraft, K., Ak, H., Davis, A. D., Lonn, E., Miller, R., Potter, M. A., Yusuf, S., Anand, S. S., & McQueen, M. J. (2015). The Relationship Between Trimethylamine-N-Oxide and Prevalent Cardiovascular Disease in a Multiethnic Population Living in Canada. Canadian Journal of Cardiology, 31(9), 1189–1194. https://doi.org/10.1016/j.cjca.2015.06.016

Misiak, B., Łoniewski, I., Marlicz, W., Frydecka, D., Szulc, A., Rudzki, L., & Samochowiec, J. (2020). The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 102, 109951. https://doi.org/10.1016/j.pnpbp.2020.109951

Mittal, R., Debs, L. H., Patel, A. P., Nguyen, D., Patel, K., O’Connor, G., Grati, M., Mittal, J., Yan, D., Eshraghi, A. A., Deo, S. K., Daunert, S., & Liu, X. Z. (2017). Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis. Journal of Cellular Physiology, 232(9), 2359–2372. https://doi.org/10.1002/jcp.25518

Mohajeri, M. H., La Fata, G., Steinert, R. E., & Weber, P. (2018). Relationship between the gut microbiome and brain function. Nutrition Reviews, 76(7), 481–496. https://doi.org/10.1093/nutrit/nuy009

Mu, Q., Kirby, J., Reilly, C. M., & Luo, X. M. (2017). Leaky Gut As a Danger Signal for Autoimmune Diseases. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00598

N I, M. (1984). The contribution of the large intestine to energy supplies in man. The American Journal of Clinical Nutrition, 39(2), 338–342. https://doi.org/10.1093/ajcn/39.2.338

Napolitano, M., Fasulo, E., Ungaro, F., Massimino, L., Sinagra, E., Danese, S., & Mandarino, F. V. (2023). Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms, 11(10), 2369. https://doi.org/10.3390/microorganisms11102369

Ohkusa, T., Koido, S., Nishikawa, Y., & Sato, N. (2019). Gut Microbiota and Chronic Constipation: A Review and Update. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00019

Palmu, J., Salosensaari, A., Havulinna, A. S., Cheng, S., Inouye, M., Jain, M., Salido, R. A., Sanders, K., Brennan, C., Humphrey, G. C., Sanders, J. G., Vartiainen, E., Laatikainen, T., Jousilahti, P., Salomaa, V., Knight, R., Lahti, L., & Niiranen, T. J. (2020). Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals. Journal of the American Heart Association, 9(15). https://doi.org/10.1161/JAHA.120.016641

Pantazi, A. C., Balasa, A. L., Mihai, C. M., Chisnoiu, T., Lupu, V. V., Kassim, M. A. K., Mihai, L., Frecus, C. E., Chirila, S. I., Lupu, A., Andrusca, A., Ionescu, C., Cuzic, V., & Cambrea, S. C. (2023). Development of Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients, 15(16), 3647. https://doi.org/10.3390/nu15163647

Prakash, A., Peters, B. A., Cobbs, E., Beggs, D., Choi, H., Li, H., Hayes, R. B., & Ahn, J. (2021). Tobacco Smoking and the Fecal Microbiome in a Large, Multi-ethnic Cohort. Cancer Epidemiology, Biomarkers & Prevention, 30(7), 1328–1335. https://doi.org/10.1158/1055-9965.EPI-20-1417

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., … Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. https://doi.org/10.1038/nature11450

Qin, N., Zheng, B., Yao, J., Guo, L., Zuo, J., Wu, L., Zhou, J., Liu, L., Guo, J., Ni, S., Li, A., Zhu, Y., Liang, W., Xiao, Y., Ehrlich, S. D., & Li, L. (2015). Influence of H7N9 virus infection and associated treatment on human gut microbiota. Scientific Reports, 5(1), 14771. https://doi.org/10.1038/srep14771

Quigley, E. M. M. (2017). Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 17(12), 94. https://doi.org/10.1007/s11910-017-0802-6

Rahman, Md. M., Islam, F., -Or-Rashid, Md. H., Mamun, A. Al, Rahaman, Md. S., Islam, Md. M., Meem, A. F. K., Sutradhar, P. R., Mitra, S., Mimi, A. A., Emran, T. Bin, Fatimawali, Idroes, R., Tallei, T. E., Ahmed, M., & Cavalu, S. (2022). The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.903570

Riedl, R. A., Atkinson, S. N., Burnett, C. M. L., Grobe, J. L., & Kirby, J. R. (2017). The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Current Hypertension Reports, 19(4), 27. https://doi.org/10.1007/s11906-017-0721-6

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019a). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019b). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014

Rudzki, L., & Maes, M. (2020a). The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Molecular Neurobiology, 57(10), 4269–4295. https://doi.org/10.1007/s12035-020-01961-y

Rudzki, L., & Maes, M. (2020b). The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Molecular Neurobiology, 57(10), 4269–4295. https://doi.org/10.1007/s12035-020-01961-y

Rudzki, L., & Maes, M. (2020c). The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Molecular Neurobiology, 57(10), 4269–4295. https://doi.org/10.1007/s12035-020-01961-y

Salazar, J., Durán, P., Díaz, M. P., Chacín, M., Santeliz, R., Mengual, E., Gutiérrez, E., León, X., Díaz, A., Bernal, M., Escalona, D., Hernández, L. A. P., & Bermúdez, V. (2023). Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator. International Journal of Environmental Research and Public Health, 20(10), 5845. https://doi.org/10.3390/ijerph20105845

Sofroniew, M. V. (2015). Astrocyte barriers to neurotoxic inflammation. Nature Reviews Neuroscience, 16(5), 249–263. https://doi.org/10.1038/nrn3898

Srikantha, P., & Mohajeri, M. H. (2019). The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. International Journal of Molecular Sciences, 20(9), 2115. https://doi.org/10.3390/ijms20092115

Sun, S., Lulla, A., Sioda, M., Winglee, K., Wu, M. C., Jacobs, D. R., Shikany, J. M., Lloyd-Jones, D. M., Launer, L. J., Fodor, A. A., & Meyer, K. A. (2019). Gut Microbiota Composition and Blood Pressure. Hypertension, 73(5), 998–1006. https://doi.org/10.1161/HYPERTENSIONAHA.118.12109

Tan, J. K., Macia, L., & Mackay, C. R. (2023). Dietary fiber and SCFAs in the regulation of mucosal immunity. Journal of Allergy and Clinical Immunology, 151(2), 361–370. https://doi.org/10.1016/j.jaci.2022.11.007

Tang, W. H. W., Wang, Z., Shrestha, K., Borowski, A. G., Wu, Y., Troughton, R. W., Klein, A. L., & Hazen, S. L. (2015). Intestinal Microbiota-Dependent Phosphatidylcholine Metabolites, Diastolic Dysfunction, and Adverse Clinical Outcomes in Chronic Systolic Heart Failure. Journal of Cardiac Failure, 21(2), 91–96. https://doi.org/10.1016/j.cardfail.2014.11.006

Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World Journal of Gastroenterology, 13(20), 2826. https://doi.org/10.3748/wjg.v13.i20.2826

Toyofuku, M., Nomura, N., & Eberl, L. (2019). Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 17(1), 13–24. https://doi.org/10.1038/s41579-018-0112-2

Trøseid, M., Ueland, T., Hov, J. R., Svardal, A., Gregersen, I., Dahl, C. P., Aakhus, S., Gude, E., Bjørndal, B., Halvorsen, B., Karlsen, T. H., Aukrust, P., Gullestad, L., Berge, R. K., & Yndestad, A. (2015). Microbiota‐dependent metabolite trimethylamine‐N‐oxide is associated with disease severity and survival of patients with chronic heart failure. Journal of Internal Medicine, 277(6), 717–726. https://doi.org/10.1111/joim.12328

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The Human Microbiome Project. Nature, 449(7164), 804–810. https://doi.org/10.1038/nature06244

Vaure, C., & Liu, Y. (2014). A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu.2014.00316

Voigt, R. M., Forsyth, C. B., Green, S. J., Engen, P. A., & Keshavarzian, A. (2016). Circadian Rhythm and the Gut Microbiome (pp. 193–205). https://doi.org/10.1016/bs.irn.2016.07.002

Wang, H.-B., Wang, P.-Y., Wang, X., Wan, Y.-L., & Liu, Y.-C. (2012). Butyrate Enhances Intestinal Epithelial Barrier Function via Up-Regulation of Tight Junction Protein Claudin-1 Transcription. Digestive Diseases and Sciences, 57(12), 3126–3135. https://doi.org/10.1007/s10620-012-2259-4

Wasiak, J., & Gawlik-Kotelnicka, O. (2023). Intestinal permeability and its significance in psychiatric disorders – A narrative review and future perspectives. Behavioural Brain Research, 448, 114459. https://doi.org/10.1016/j.bbr.2023.114459

Weiss, G. A., & Hennet, T. (2017). Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 74(16), 2959–2977. https://doi.org/10.1007/s00018-017-2509-x

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 334(6052), 105–108. https://doi.org/10.1126/science.1208344

Wu, Q., Xu, Z., Song, S., Zhang, H., Zhang, W., Liu, L., Chen, Y., & Sun, J. (2020). Gut microbiota modulates stress-induced hypertension through the HPA axis. Brain Research Bulletin, 162, 49–58. https://doi.org/10.1016/j.brainresbull.2020.05.014

Xie, J., Cools, L., Van Imschoot, G., Van Wonterghem, E., Pauwels, M. J., Vlaeminck, I., De Witte, C., EL Andaloussi, S., Wierda, K., De Groef, L., Haesebrouck, F., Van Hoecke, L., & Vandenbroucke, R. E. (2023). Helicobacter pylori ‐derived outer membrane vesicles contribute to Alzheimer’s disease pathogenesis via C3‐C3aR signalling. Journal of Extracellular Vesicles, 12(2). https://doi.org/10.1002/jev2.12306

Yang, T., Richards, E. M., Pepine, C. J., & Raizada, M. K. (2018). The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nature Reviews Nephrology, 14(7), 442–456. https://doi.org/10.1038/s41581-018-0018-2

Zhang, L., Chu, J., Hao, W., Zhang, J., Li, H., Yang, C., Yang, J., Chen, X., & Wang, H. (2021). Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators of Inflammation, 2021, 1–12. https://doi.org/10.1155/2021/5110276

Zhang, P. (2022). Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. International Journal of Molecular Sciences, 23(17), 9588. https://doi.org/10.3390/ijms23179588

Zhao, S., Jang, C., Liu, J., Uehara, K., Gilbert, M., Izzo, L., Zeng, X., Trefely, S., Fernandez, S., Carrer, A., Miller, K. D., Schug, Z. T., Snyder, N. W., Gade, T. P., Titchenell, P. M., Rabinowitz, J. D., & Wellen, K. E. (2020). Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature, 579(7800), 586–591. https://doi.org/10.1038/s41586-020-2101-7

Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30(6), 492–506. https://doi.org/10.1038/s41422-020-0332-7

Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R. B., McIntyre, T. M., Silverstein, R. L., Tang, W. H. W., DiDonato, J. A., Brown, J. M., Lusis, A. J., & Hazen, S. L. (2016). Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165(1), 111–124. https://doi.org/10.1016/j.cell.2016.02.011

Quality in Sport

Downloads

  • PDF

Published

2025-05-11

How to Cite

1.
WASIAK, Jakub, ZIELONKA, Kacper, DĄDELA, Bartosz, MARKOWSKI, Marcin, ŚLIWA, Natalia, MAJEWSKA, Emilia Maria, KAWALSKA, Eliza, GNITECKI, Szymon, JANCZURA, Szymon and BOROWSKI, Maciej. Gut Microbiota and Gut-Brain Axis in Health and Disease A Narrative Review. Quality in Sport. Online. 11 May 2025. Vol. 41, p. 60102. [Accessed 28 June 2025]. DOI 10.12775/QS.2025.41.60102.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 41 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Jakub Wasiak, Kacper Zielonka, Bartosz Dądela, Marcin Markowski, Natalia Śliwa, Emilia Maria Majewska, Eliza Kawalska, Szymon Gnitecki, Szymon Janczura, Maciej Borowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 87
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

microbiota, gut-brain axis, SCFAs, dysbiosis
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop