Gut Microbiota and Gut-Brain Axis in Health and Disease A Narrative Review
DOI:
https://doi.org/10.12775/QS.2025.41.60102Keywords
microbiota, gut-brain axis, SCFAs, dysbiosisAbstract
Microbiota, a composition of trillions of microorganisms, plays essential roles in metabolism, immunity, and gut-brain axis connection. It helps in the digestion and production of valuable metabolites and keeps intestinal integrity intact. A balanced microbiota or eubiosis supports health; dysbiosis causes leaky gut syndrome, systemic inflammation, and chronic diseases.
Therefore, the purpose of this review is to provide an analysis of the microbiota-gut-brain axis (GBA), as well as important microbial metabolites like trimethylamine N-oxide (TMAO), short chain fatty acids (SCFAs), and their implications concerning health and disease states. A comprehensive search of references related to microbiota was conducted on PubMed using the following search terms: “microbiota, gut-brain axis, dysbiosis, eubiosis, microbiota composition, microbial metabolites”.
Major metabolites such as SCFAs help with the regulation of immune functions, act as protectors of the blood-brain barrier, and are known to support neuroprotection, while deleterious substances such as TMAO find association with cardiovascular diseases.
Dysbiosis in the gut finds association with various chronic diseases such as type 2 diabetes, hypertension, and neurodegenerative disorders. Changes in microbial composition disrupt metabolic processes and provoke systemic inflammation. A better understanding of these mechanisms would facilitate the early detection of diseases based on the recognition of specific bacterial shifts and/or metabolite imbalances. Microbiota-health-improving relationships are still being explored, demonstrating the need for additional studies aimed at developments of specific treatments for disease prevention and treatment.
References
Arentsen, T., Qian, Y., Gkotzis, S., Femenia, T., Wang, T., Udekwu, K., Forssberg, H., & Diaz Heijtz, R. (2017). The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Molecular Psychiatry, 22(2), 257–266. https://doi.org/10.1038/mp.2016.182
B. Estrela, A., & Abraham, W.-R. (2011). Adenosine in the Inflamed Gut: A Janus Faced Compound. Current Medicinal Chemistry, 18(18), 2791–2815. https://doi.org/10.2174/092986711796011274
Barrientos-Durán, A., Fuentes-López, A., de Salazar, A., Plaza-Díaz, J., & García, F. (2020). Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients, 12(2), 419. https://doi.org/10.3390/nu12020419
Beam, A., Clinger, E., & Hao, L. (2021). Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients, 13(8), 2795. https://doi.org/10.3390/nu13082795
Berkes, J. (2003). Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut, 52(3), 439–451. https://doi.org/10.1136/gut.52.3.439
Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.-D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology, 14(1), 189. https://doi.org/10.1186/s12876-014-0189-7
Boini, K. M., Hussain, T., Li, P.-L., & Koka, S. S. (2017). Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cellular Physiology and Biochemistry, 44(1), 152–162. https://doi.org/10.1159/000484623
Campaniello, D., Corbo, M. R., Sinigaglia, M., Speranza, B., Racioppo, A., Altieri, C., & Bevilacqua, A. (2022). How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients, 14(12), 2456. https://doi.org/10.3390/nu14122456
Cavin, J.-B., Cuddihey, H., MacNaughton, W. K., & Sharkey, K. A. (2020). Acute regulation of intestinal ion transport and permeability in response to luminal nutrients: the role of the enteric nervous system. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318(2), G254–G264. https://doi.org/10.1152/ajpgi.00186.2019
Cecil, J. D., O’Brien-Simpson, N. M., Lenzo, J. C., Holden, J. A., Singleton, W., Perez-Gonzalez, A., Mansell, A., & Reynolds, E. C. (2017). Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.01017
Chou, H.-H., Chien, W.-H., Wu, L.-L., Cheng, C.-H., Chung, C.-H., Horng, J.-H., Ni, Y.-H., Tseng, H.-T., Wu, D., Lu, X., Wang, H.-Y., Chen, P.-J., & Chen, D.-S. (2015). Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proceedings of the National Academy of Sciences, 112(7), 2175–2180. https://doi.org/10.1073/pnas.1424775112
Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota–gut–brain communication. Nature Reviews Gastroenterology & Hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3
Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
De Angelis, M., Francavilla, R., Piccolo, M., De Giacomo, A., & Gobbetti, M. (2015). Autism spectrum disorders and intestinal microbiota. Gut Microbes, 6(3), 207–213. https://doi.org/10.1080/19490976.2015.1035855
De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I., Cristofori, F., Guerzoni, M. E., Gobbetti, M., & Francavilla, R. (2013). Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE, 8(10), e76993. https://doi.org/10.1371/journal.pone.0076993
Denman, C. R., Park, S. M., & Jo, J. (2023). Gut-brain axis: gut dysbiosis and psychiatric disorders in Alzheimer’s and Parkinson’s disease. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1268419
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2014a). Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 156(1–2), 84–96. https://doi.org/10.1016/j.cell.2013.12.016
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2014b). Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell, 156(1–2), 84–96. https://doi.org/10.1016/j.cell.2013.12.016
Dicks, L. M. T. (2022a). Gut Bacteria and Neurotransmitters. Microorganisms, 10(9), 1838. https://doi.org/10.3390/microorganisms10091838
Dicks, L. M. T. (2022b). Gut Bacteria and Neurotransmitters. Microorganisms, 10(9), 1838. https://doi.org/10.3390/microorganisms10091838
Dienel, S. J., Enwright, J. F., Hoftman, G. D., & Lewis, D. A. (2020). Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: Disease effects differ across anatomical levels of resolution. Schizophrenia Research, 217, 86–94. https://doi.org/10.1016/j.schres.2019.06.003
Dinan, T. G., & Cryan, J. F. (2015). The impact of gut microbiota on brain and behaviour. Current Opinion in Clinical Nutrition and Metabolic Care, 18(6), 552–558. https://doi.org/10.1097/MCO.0000000000000221
Dinan, T. G., Stilling, R. M., Stanton, C., & Cryan, J. F. (2015). Collective unconscious: How gut microbes shape human behavior. Journal of Psychiatric Research, 63, 1–9. https://doi.org/10.1016/j.jpsychires.2015.02.021
Dominguez-Bello, M. G., De Jesus-Laboy, K. M., Shen, N., Cox, L. M., Amir, A., Gonzalez, A., Bokulich, N. A., Song, S. J., Hoashi, M., Rivera-Vinas, J. I., Mendez, K., Knight, R., & Clemente, J. C. (2016). Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature Medicine, 22(3), 250–253. https://doi.org/10.1038/nm.4039
Duscha, A., Gisevius, B., Hirschberg, S., Yissachar, N., Stangl, G. I., Dawin, E., Bader, V., Haase, S., Kaisler, J., David, C., Schneider, R., Troisi, R., Zent, D., Hegelmaier, T., Dokalis, N., Gerstein, S., Del Mare-Roumani, S., Amidror, S., Staszewski, O., … Haghikia, A. (2020). Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell, 180(6), 1067-1080.e16. https://doi.org/10.1016/j.cell.2020.02.035
Dwiyanto, J., Hussain, M. H., Reidpath, D., Ong, K. S., Qasim, A., Lee, S. W. H., Lee, S. M., Foo, S. C., Chong, C. W., & Rahman, S. (2021). Ethnicity influences the gut microbiota of individuals sharing a geographical location: a cross-sectional study from a middle-income country. Scientific Reports, 11(1), 2618. https://doi.org/10.1038/s41598-021-82311-3
Finegold, S. M., Downes, J., & Summanen, P. H. (2012). Microbiology of regressive autism. Anaerobe, 18(2), 260–262. https://doi.org/10.1016/j.anaerobe.2011.12.018
Fitzstevens, J. L., Smith, K. C., Hagadorn, J. I., Caimano, M. J., Matson, A. P., & Brownell, E. A. (2017). Systematic Review of the Human Milk Microbiota. Nutrition in Clinical Practice, 32(3), 354–364. https://doi.org/10.1177/0884533616670150
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., Arumugam, M., Kristiansen, K., Yvonne Voigt, A., Vestergaard, H., Hercog, R., Igor Costea, P., Roat Kultima, J., Li, J., Jørgensen, T., … Pedersen, O. (2015a). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://doi.org/10.1038/nature15766
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., Arumugam, M., Kristiansen, K., Yvonne Voigt, A., Vestergaard, H., Hercog, R., Igor Costea, P., Roat Kultima, J., Li, J., Jørgensen, T., … Pedersen, O. (2015b). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581), 262–266. https://doi.org/10.1038/nature15766
Furness, J. B. (2012). The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology & Hepatology, 9(5), 286–294. https://doi.org/10.1038/nrgastro.2012.32
Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., Takahashi, M., Fukuda, N. N., Murakami, S., Miyauchi, E., Hino, S., Atarashi, K., Onawa, S., Fujimura, Y., Lockett, T., … Ohno, H. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446–450. https://doi.org/10.1038/nature12721
Ge, P., Duan, H., Tao, C., Niu, S., Hu, Y., Duan, R., Shen, A., Sun, Y., & Sun, W. (2023a). TMAO Promotes NLRP3 Inflammasome Activation of Microglia Aggravating Neurological Injury in Ischemic Stroke Through FTO/IGF2BP2. Journal of Inflammation Research, Volume 16, 3699–3714. https://doi.org/10.2147/JIR.S399480
Ge, P., Duan, H., Tao, C., Niu, S., Hu, Y., Duan, R., Shen, A., Sun, Y., & Sun, W. (2023b). TMAO Promotes NLRP3 Inflammasome Activation of Microglia Aggravating Neurological Injury in Ischemic Stroke Through FTO/IGF2BP2. Journal of Inflammation Research, Volume 16, 3699–3714. https://doi.org/10.2147/JIR.S399480
González Hernández, M. A., Canfora, E. E., Jocken, J. W. E., & Blaak, E. E. (2019). The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients, 11(8), 1943. https://doi.org/10.3390/nu11081943
Gonzalez-Santana, A., & Diaz Heijtz, R. (2020). Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. Trends in Molecular Medicine, 26(8), 729–743. https://doi.org/10.1016/j.molmed.2020.05.003
Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., Beaumont, M., Van Treuren, W., Knight, R., Bell, J. T., Spector, T. D., Clark, A. G., & Ley, R. E. (2014). Human Genetics Shape the Gut Microbiome. Cell, 159(4), 789–799. https://doi.org/10.1016/j.cell.2014.09.053
Gubert, C., Kong, G., Renoir, T., & Hannan, A. J. (2020). Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiology of Disease, 134, 104621. https://doi.org/10.1016/j.nbd.2019.104621
Hao, C., Gao, Z., Liu, X., Rong, Z., Jia, J., Kang, K., Guo, W., & Li, J. (2020). Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner. Scientific Reports, 10(1), 19917. https://doi.org/10.1038/s41598-020-77085-z
Hemarajata, P., & Versalovic, J. (2013a). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51. https://doi.org/10.1177/1756283X12459294
Hemarajata, P., & Versalovic, J. (2013b). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51. https://doi.org/10.1177/1756283X12459294
Hu, S., Kuwabara, R., de Haan, B. J., Smink, A. M., & de Vos, P. (2020). Acetate and Butyrate Improve β-cell Metabolism and Mitochondrial Respiration under Oxidative Stress. International Journal of Molecular Sciences, 21(4), 1542. https://doi.org/10.3390/ijms21041542
Huang, Y., Wang, Y. F., Miao, J., Zheng, R. F., & Li, J. Y. (2024). Short-chain fatty acids: Important components of the gut-brain axis against AD. Biomedicine & Pharmacotherapy, 175, 116601. https://doi.org/10.1016/j.biopha.2024.116601
Janeiro, M., Ramírez, M., Milagro, F., Martínez, J., & Solas, M. (2018). Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10(10), 1398. https://doi.org/10.3390/nu10101398
Kealy, J., Greene, C., & Campbell, M. (2020). Blood-brain barrier regulation in psychiatric disorders. Neuroscience Letters, 726, 133664. https://doi.org/10.1016/j.neulet.2018.06.033
Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2017). Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 112, 399–412. https://doi.org/10.1016/j.neuropharm.2016.07.002
Kinashi, Y., & Hase, K. (2021a). Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.673708
Kinashi, Y., & Hase, K. (2021b). Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.673708
Leeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 11(12), 2862. https://doi.org/10.3390/nu11122862
Lever, M., George, P. M., Slow, S., Bellamy, D., Young, J. M., Ho, M., McEntyre, C. J., Elmslie, J. L., Atkinson, W., Molyneux, S. L., Troughton, R. W., Frampton, C. M., Richards, A. M., & Chambers, S. T. (2014). Betaine and Trimethylamine-N-Oxide as Predictors of Cardiovascular Outcomes Show Different Patterns in Diabetes Mellitus: An Observational Study. PLoS ONE, 9(12), e114969. https://doi.org/10.1371/journal.pone.0114969
Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124(4), 837–848. https://doi.org/10.1016/j.cell.2006.02.017
Li, D., Yu, S., Long, Y., Shi, A., Deng, J., Ma, Y., Wen, J., Li, X., Liu, S., Zhang, Y., Wan, J., Li, N., & Ao, R. (2022). Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.985378
Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., Geng, B., Zhang, W., Weldon, R., Auguste, K., Yang, L., Liu, X., Chen, L., Yang, X., Zhu, B., & Cai, J. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5(1), 14. https://doi.org/10.1186/s40168-016-0222-x
Li, Z., Chen, Y., & Ke, H. (2024). Investigating the Causal Relationship Between Gut Microbiota and Crohn’s Disease: A Mendelian Randomization Study. Gastroenterology, 166(2), 354–355. https://doi.org/10.1053/j.gastro.2023.08.047
Liu, Y., Yu, J., Yang, Y., Han, B., Wang, Q., & Du, S. (2024). Investigating the causal relationship of gut microbiota with GERD and BE: a bidirectional mendelian randomization. BMC Genomics, 25(1), 471. https://doi.org/10.1186/s12864-024-10377-0
Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology, 160(5), 1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066
Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021a). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1), 37–49. https://doi.org/10.1017/S0029665120006916
Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021b). SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1), 37–49. https://doi.org/10.1017/S0029665120006916
McCallum, G., & Tropini, C. (2024). The gut microbiota and its biogeography. Nature Reviews Microbiology, 22(2), 105–118. https://doi.org/10.1038/s41579-023-00969-0
Mente, A., Chalcraft, K., Ak, H., Davis, A. D., Lonn, E., Miller, R., Potter, M. A., Yusuf, S., Anand, S. S., & McQueen, M. J. (2015). The Relationship Between Trimethylamine-N-Oxide and Prevalent Cardiovascular Disease in a Multiethnic Population Living in Canada. Canadian Journal of Cardiology, 31(9), 1189–1194. https://doi.org/10.1016/j.cjca.2015.06.016
Misiak, B., Łoniewski, I., Marlicz, W., Frydecka, D., Szulc, A., Rudzki, L., & Samochowiec, J. (2020). The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 102, 109951. https://doi.org/10.1016/j.pnpbp.2020.109951
Mittal, R., Debs, L. H., Patel, A. P., Nguyen, D., Patel, K., O’Connor, G., Grati, M., Mittal, J., Yan, D., Eshraghi, A. A., Deo, S. K., Daunert, S., & Liu, X. Z. (2017). Neurotransmitters: The Critical Modulators Regulating Gut–Brain Axis. Journal of Cellular Physiology, 232(9), 2359–2372. https://doi.org/10.1002/jcp.25518
Mohajeri, M. H., La Fata, G., Steinert, R. E., & Weber, P. (2018). Relationship between the gut microbiome and brain function. Nutrition Reviews, 76(7), 481–496. https://doi.org/10.1093/nutrit/nuy009
Mu, Q., Kirby, J., Reilly, C. M., & Luo, X. M. (2017). Leaky Gut As a Danger Signal for Autoimmune Diseases. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00598
N I, M. (1984). The contribution of the large intestine to energy supplies in man. The American Journal of Clinical Nutrition, 39(2), 338–342. https://doi.org/10.1093/ajcn/39.2.338
Napolitano, M., Fasulo, E., Ungaro, F., Massimino, L., Sinagra, E., Danese, S., & Mandarino, F. V. (2023). Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms, 11(10), 2369. https://doi.org/10.3390/microorganisms11102369
Ohkusa, T., Koido, S., Nishikawa, Y., & Sato, N. (2019). Gut Microbiota and Chronic Constipation: A Review and Update. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2019.00019
Palmu, J., Salosensaari, A., Havulinna, A. S., Cheng, S., Inouye, M., Jain, M., Salido, R. A., Sanders, K., Brennan, C., Humphrey, G. C., Sanders, J. G., Vartiainen, E., Laatikainen, T., Jousilahti, P., Salomaa, V., Knight, R., Lahti, L., & Niiranen, T. J. (2020). Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals. Journal of the American Heart Association, 9(15). https://doi.org/10.1161/JAHA.120.016641
Pantazi, A. C., Balasa, A. L., Mihai, C. M., Chisnoiu, T., Lupu, V. V., Kassim, M. A. K., Mihai, L., Frecus, C. E., Chirila, S. I., Lupu, A., Andrusca, A., Ionescu, C., Cuzic, V., & Cambrea, S. C. (2023). Development of Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients, 15(16), 3647. https://doi.org/10.3390/nu15163647
Prakash, A., Peters, B. A., Cobbs, E., Beggs, D., Choi, H., Li, H., Hayes, R. B., & Ahn, J. (2021). Tobacco Smoking and the Fecal Microbiome in a Large, Multi-ethnic Cohort. Cancer Epidemiology, Biomarkers & Prevention, 30(7), 1328–1335. https://doi.org/10.1158/1055-9965.EPI-20-1417
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., … Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. https://doi.org/10.1038/nature11450
Qin, N., Zheng, B., Yao, J., Guo, L., Zuo, J., Wu, L., Zhou, J., Liu, L., Guo, J., Ni, S., Li, A., Zhu, Y., Liang, W., Xiao, Y., Ehrlich, S. D., & Li, L. (2015). Influence of H7N9 virus infection and associated treatment on human gut microbiota. Scientific Reports, 5(1), 14771. https://doi.org/10.1038/srep14771
Quigley, E. M. M. (2017). Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 17(12), 94. https://doi.org/10.1007/s11910-017-0802-6
Rahman, Md. M., Islam, F., -Or-Rashid, Md. H., Mamun, A. Al, Rahaman, Md. S., Islam, Md. M., Meem, A. F. K., Sutradhar, P. R., Mitra, S., Mimi, A. A., Emran, T. Bin, Fatimawali, Idroes, R., Tallei, T. E., Ahmed, M., & Cavalu, S. (2022). The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.903570
Riedl, R. A., Atkinson, S. N., Burnett, C. M. L., Grobe, J. L., & Kirby, J. R. (2017). The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Current Hypertension Reports, 19(4), 27. https://doi.org/10.1007/s11906-017-0721-6
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019a). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019b). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014
Rudzki, L., & Maes, M. (2020a). The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Molecular Neurobiology, 57(10), 4269–4295. https://doi.org/10.1007/s12035-020-01961-y
Rudzki, L., & Maes, M. (2020b). The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Molecular Neurobiology, 57(10), 4269–4295. https://doi.org/10.1007/s12035-020-01961-y
Rudzki, L., & Maes, M. (2020c). The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Molecular Neurobiology, 57(10), 4269–4295. https://doi.org/10.1007/s12035-020-01961-y
Salazar, J., Durán, P., Díaz, M. P., Chacín, M., Santeliz, R., Mengual, E., Gutiérrez, E., León, X., Díaz, A., Bernal, M., Escalona, D., Hernández, L. A. P., & Bermúdez, V. (2023). Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator. International Journal of Environmental Research and Public Health, 20(10), 5845. https://doi.org/10.3390/ijerph20105845
Sofroniew, M. V. (2015). Astrocyte barriers to neurotoxic inflammation. Nature Reviews Neuroscience, 16(5), 249–263. https://doi.org/10.1038/nrn3898
Srikantha, P., & Mohajeri, M. H. (2019). The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. International Journal of Molecular Sciences, 20(9), 2115. https://doi.org/10.3390/ijms20092115
Sun, S., Lulla, A., Sioda, M., Winglee, K., Wu, M. C., Jacobs, D. R., Shikany, J. M., Lloyd-Jones, D. M., Launer, L. J., Fodor, A. A., & Meyer, K. A. (2019). Gut Microbiota Composition and Blood Pressure. Hypertension, 73(5), 998–1006. https://doi.org/10.1161/HYPERTENSIONAHA.118.12109
Tan, J. K., Macia, L., & Mackay, C. R. (2023). Dietary fiber and SCFAs in the regulation of mucosal immunity. Journal of Allergy and Clinical Immunology, 151(2), 361–370. https://doi.org/10.1016/j.jaci.2022.11.007
Tang, W. H. W., Wang, Z., Shrestha, K., Borowski, A. G., Wu, Y., Troughton, R. W., Klein, A. L., & Hazen, S. L. (2015). Intestinal Microbiota-Dependent Phosphatidylcholine Metabolites, Diastolic Dysfunction, and Adverse Clinical Outcomes in Chronic Systolic Heart Failure. Journal of Cardiac Failure, 21(2), 91–96. https://doi.org/10.1016/j.cardfail.2014.11.006
Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World Journal of Gastroenterology, 13(20), 2826. https://doi.org/10.3748/wjg.v13.i20.2826
Toyofuku, M., Nomura, N., & Eberl, L. (2019). Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 17(1), 13–24. https://doi.org/10.1038/s41579-018-0112-2
Trøseid, M., Ueland, T., Hov, J. R., Svardal, A., Gregersen, I., Dahl, C. P., Aakhus, S., Gude, E., Bjørndal, B., Halvorsen, B., Karlsen, T. H., Aukrust, P., Gullestad, L., Berge, R. K., & Yndestad, A. (2015). Microbiota‐dependent metabolite trimethylamine‐N‐oxide is associated with disease severity and survival of patients with chronic heart failure. Journal of Internal Medicine, 277(6), 717–726. https://doi.org/10.1111/joim.12328
Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The Human Microbiome Project. Nature, 449(7164), 804–810. https://doi.org/10.1038/nature06244
Vaure, C., & Liu, Y. (2014). A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu.2014.00316
Voigt, R. M., Forsyth, C. B., Green, S. J., Engen, P. A., & Keshavarzian, A. (2016). Circadian Rhythm and the Gut Microbiome (pp. 193–205). https://doi.org/10.1016/bs.irn.2016.07.002
Wang, H.-B., Wang, P.-Y., Wang, X., Wan, Y.-L., & Liu, Y.-C. (2012). Butyrate Enhances Intestinal Epithelial Barrier Function via Up-Regulation of Tight Junction Protein Claudin-1 Transcription. Digestive Diseases and Sciences, 57(12), 3126–3135. https://doi.org/10.1007/s10620-012-2259-4
Wasiak, J., & Gawlik-Kotelnicka, O. (2023). Intestinal permeability and its significance in psychiatric disorders – A narrative review and future perspectives. Behavioural Brain Research, 448, 114459. https://doi.org/10.1016/j.bbr.2023.114459
Weiss, G. A., & Hennet, T. (2017). Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 74(16), 2959–2977. https://doi.org/10.1007/s00018-017-2509-x
Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 334(6052), 105–108. https://doi.org/10.1126/science.1208344
Wu, Q., Xu, Z., Song, S., Zhang, H., Zhang, W., Liu, L., Chen, Y., & Sun, J. (2020). Gut microbiota modulates stress-induced hypertension through the HPA axis. Brain Research Bulletin, 162, 49–58. https://doi.org/10.1016/j.brainresbull.2020.05.014
Xie, J., Cools, L., Van Imschoot, G., Van Wonterghem, E., Pauwels, M. J., Vlaeminck, I., De Witte, C., EL Andaloussi, S., Wierda, K., De Groef, L., Haesebrouck, F., Van Hoecke, L., & Vandenbroucke, R. E. (2023). Helicobacter pylori ‐derived outer membrane vesicles contribute to Alzheimer’s disease pathogenesis via C3‐C3aR signalling. Journal of Extracellular Vesicles, 12(2). https://doi.org/10.1002/jev2.12306
Yang, T., Richards, E. M., Pepine, C. J., & Raizada, M. K. (2018). The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nature Reviews Nephrology, 14(7), 442–456. https://doi.org/10.1038/s41581-018-0018-2
Zhang, L., Chu, J., Hao, W., Zhang, J., Li, H., Yang, C., Yang, J., Chen, X., & Wang, H. (2021). Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications. Mediators of Inflammation, 2021, 1–12. https://doi.org/10.1155/2021/5110276
Zhang, P. (2022). Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. International Journal of Molecular Sciences, 23(17), 9588. https://doi.org/10.3390/ijms23179588
Zhao, S., Jang, C., Liu, J., Uehara, K., Gilbert, M., Izzo, L., Zeng, X., Trefely, S., Fernandez, S., Carrer, A., Miller, K. D., Schug, Z. T., Snyder, N. W., Gade, T. P., Titchenell, P. M., Rabinowitz, J. D., & Wellen, K. E. (2020). Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature, 579(7800), 586–591. https://doi.org/10.1038/s41586-020-2101-7
Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30(6), 492–506. https://doi.org/10.1038/s41422-020-0332-7
Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., Li, L., Fu, X., Wu, Y., Mehrabian, M., Sartor, R. B., McIntyre, T. M., Silverstein, R. L., Tang, W. H. W., DiDonato, J. A., Brown, J. M., Lusis, A. J., & Hazen, S. L. (2016). Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165(1), 111–124. https://doi.org/10.1016/j.cell.2016.02.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jakub Wasiak, Kacper Zielonka, Bartosz Dądela, Marcin Markowski, Natalia Śliwa, Emilia Maria Majewska, Eliza Kawalska, Szymon Gnitecki, Szymon Janczura, Maciej Borowski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 87
Number of citations: 0