Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Automated Recognition of Abnormalities in Gastrointestinal Endoscopic Images – Evaluation of an AI Tool for Identifying Polyps and Other Irregularities
  • Home
  • /
  • Automated Recognition of Abnormalities in Gastrointestinal Endoscopic Images – Evaluation of an AI Tool for Identifying Polyps and Other Irregularities
  1. Home /
  2. Archives /
  3. Vol. 41 (2025) /
  4. Medical Sciences

Automated Recognition of Abnormalities in Gastrointestinal Endoscopic Images – Evaluation of an AI Tool for Identifying Polyps and Other Irregularities

Authors

  • Weronika Jarych Szpital Morski im. PCK w Gdyni, Powstania Styczniowego 1, 81-519 Gdynia, Poland https://orcid.org/0009-0009-1335-8072
  • Elżbieta Tokarczyk Szpital św. Wincentego a Paulo w Gdyni, ul. Wójta Radtkego 1, 81-348 Gdynia https://orcid.org/0009-0003-9683-7699
  • Patryk Iglewski Wojewódzki Szpital Zespolony im. L. Rydygiera w Toruniu https://orcid.org/0009-0004-6611-2168
  • Daria Ziemińska Szpital Św. Wincentego a Paulo w Gdyni, ul. Wójta Radtkego 1, 81-348 Gdynia https://orcid.org/0009-0001-8240-2593
  • Karina Motolko Specjalistyczny Szpital Miejski im. M. Kopernika w Toruniu, ul. Stefana Batorego 17/19, 87-100 Toruń https://orcid.org/0009-0001-9971-6687
  • Rafał Burczyk Szpital Uniwersytecki nr 2 im. dr J. Biziela, ul. Ujejskiego 75, 85-168 Bydgoszcz https://orcid.org/0000-0002-1650-1534
  • Konrad Duszyński Studenckie Koło Naukowe Okulistyki, Gdański Uniwersytet Medyczny, ul. Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk https://orcid.org/0009-0006-5524-8857
  • Michał Kociński Collegium Medicum in Bydgoszcz: Bydgoszcz, Kujawsko-Pomorskie, PL https://orcid.org/0009-0007-7651-7929
  • Jan Reinald Wendt Szpital Św. Wincentego a Paulo w Gdyni, ul. Wójta Radtkego 1, 81-348 Gdynia https://orcid.org/0009-0009-6163-7041

DOI:

https://doi.org/10.12775/QS.2025.41.60070

Keywords

Artificial intelligence, endoscopy, gastrointestinal imaging, polyps detection, computer-aided detection, convolutional neural networks, predictive analytics in endoscopy, machine learning in healthcare

Abstract

This study investigates the application of artificial intelligence (AI) for the automatic detection of pathological abnormalities in gastrointestinal endoscopic images. Specifically, it evaluates the performance of an AI tool in identifying and classifying lesions such as polyps and other irregularities, including inflammatory changes, within real-time endoscopic procedures. The primary objective is to assess the tool's diagnostic accuracy and its potential to improve lesion detection, thereby reducing the likelihood of overlooked abnormalities. Leveraging advanced machine learning techniques, particularly convolutional neural networks (CNNs), the AI system aims to enhance diagnostic precision and support clinicians in making prompt, evidence-based decisions. Key advantages of AI integration in endoscopy include improved sensitivity, minimized detection errors, and the potential to optimize clinical workflow efficiency. However, the study also addresses significant challenges, including the necessity for large, heterogeneous datasets for model validation, the need for standardized AI applications, and the ethical implications of AI-assisted clinical decision-making. Additionally, the potential benefits of combining AI with complementary imaging technologies, such as fluorescence imaging and spectroscopy, are explored to further enhance diagnostic capabilities. In conclusion, the study highlights the promising role of AI in gastrointestinal endoscopy while underscoring the importance of continued research, algorithmic refinement, and the establishment of regulatory frameworks to fully harness its clinical potential.

References

[1] Scaffidi, M. A., Khan, R., Grover, S. C., Gimpaya, N., & Walsh, C. M. (2021). Self-assessment of competence in endoscopy: Challenges and insights. Journal of the Canadian Association of Gastroenterology, 4(4), 151–157. https://doi.org/10.1093/jcag/gwaa020

[2] Kono, Y., Inomata, M., Sumi, Y., Ohigashi, S., Ieiri, S., Shin, T., Shinohara, T., Abe, T., Osoegawa, A., Fujisawa, M., Mori, T., Kitagawa, Y., Kitano, S., & Forum of 8K Endoscopy Medical Application Forum. (2023). A multicenter survey of effects and challenges of an 8K ultra-high-definition endoscopy system compared to existing endoscopy systems for endoscopic surgery. Asian Journal of Endoscopic Surgery, 16(1), 50–57. https://doi.org/10.1111/ases.13118

[3] Ravi, S., Aryan, M., Ergen, W. F., Leal, L., Oster, R. A., Lin, C. P., Weber, F. H., & Peter, S. (2023). Bedside live-view capsule endoscopy in evaluation of overt obscure gastrointestinal bleeding: A pilot point-of-care study. Digestive Diseases (Basel, Switzerland), 41(3), 500–505. https://doi.org/10.1159/000526744

[4] Piaścik, M., Pawlik, M., & Rydzewska, G. (2006). Case report
Infectious inflammatory bowel diseases and Leśniowski-Crohn’s disease – diagnostic and therapeutic problems. Gastroenterology Review/Przegląd Gastroenterologiczny, 1(2), 88–91. https://www.termedia.pl/Opis-przypadku-Infekcyjne-zapalenia-jelit-a-choroba-Lesniowskiego-Crohna-8211-problemy-diagnostyczne-i-terapeutyczne,41,6190,1,0.html

[5] Kaan, H. L., & Ho, K. Y. (2020). Clinical adoption of robotics in endoscopy: Challenges and solutions. JGH Open: An Open Access Journal of Gastroenterology and Hepatology, 4(5), 790–794. https://doi.org/10.1002/jgh3.12412

[6] Pfau, P. R., & Sivak, M. V. (2001). Endoscopic diagnostics. Gastroenterology, 120(3), 763–781. https://doi.org/10.1053/gast.2001.22429

[7] Subramanian, V., & Ragunath, K. (2014). Advanced endoscopic imaging: A review of commercially available technologies. Clinical Gastroenterology and Hepatology, 12(3), 368-376.e1. https://doi.org/10.1016/j.cgh.2013.06.015

[8] Saunders, B. P., & Tsiamoulos, Z. P. (2016). Endoscopic mucosal resection and endoscopic submucosal dissection of large colonic polyps. Nature Reviews Gastroenterology & Hepatology, 13(8), 486–496. https://doi.org/10.1038/nrgastro.2016.96

[9] He, Z., Wang, P., & Ye, X. (2021). Novel endoscopic optical diagnostic technologies in medical trial research: Recent advancements and future prospects. BioMedical Engineering OnLine, 20(1), 5. https://doi.org/10.1186/s12938-020-00845-5

[10] Yoon, J., Grigoroiu, A., & Bohndiek, S. E. (2020). A background correction method to compensate illumination variation in hyperspectral imaging. PLOS ONE, 15(3), e0229502. https://doi.org/10.1371/journal.pone.0229502

[11] Kiesslich, R., Goetz, M., Hoffman, A., & Galle, P. R. (2011). New imaging techniques and opportunities in endoscopy. Nature Reviews Gastroenterology & Hepatology, 8(10), 547–553. https://doi.org/10.1038/nrgastro.2011.152

[12] Gómez, P., Semmler, M., Schützenberger, A., Bohr, C., & Döllinger, M. (2019). Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network. Medical & Biological Engineering & Computing, 57(7), 1451–1463. https://doi.org/10.1007/s11517-019-01965-4

[13] Majumder, S., Long, Z., Hooke, A. W., Petersen, B. T., Gleeson, F. C., Bruno, M., DeWitt, J., Elta, G., Fuji, L., Gomez, V., Palazzo, L., Shami, V. M., Stevens, T., Topazian, M. D., Wiersema, M. J., Berglund, L. J., Abu Dayyeh, B. K., Chandrasekhara, V., Iyer, P. G., … Levy, M. J. (2022). Prospective study assessing impact of ethylene oxide sterilization on endoscopic ultrasound image quality. Clinical Gastroenterology and Hepatology, 20(12), 2780–2789. https://doi.org/10.1016/j.cgh.2022.02.060

[14] Münzer, B., Schoeffmann, K., & Böszörmenyi, L. (2018). Content-based processing and analysis of endoscopic images and videos: A survey. Multimedia Tools and Applications, 77(1), 1323–1362. https://doi.org/10.1007/s11042-016-4219-z

[15] Ali, S., Zhou, F., Braden, B., Bailey, A., Yang, S., Cheng, G., Zhang, P., Li, X., Kayser, M., Soberanis-Mukul, R. D., Albarqouni, S., Wang, X., Wang, C., Watanabe, S., Oksuz, I., Ning, Q., Yang, S., Khan, M. A., Gao, X. W., … Rittscher, J. (2020). An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy. Scientific Reports, 10(1), 2748. https://doi.org/10.1038/s41598-020-59413-5

[16] Chadebecq, F., Lovat, L. B., & Stoyanov, D. (2023). Artificial intelligence and automation in endoscopy and surgery. Nature Reviews Gastroenterology & Hepatology, 20(3), 171–182. https://doi.org/10.1038/s41575-022-00701-y

[17] Vuik, F. E. R., Nieuwenburg, S. A. V., Moen, S., Schreuders, E. H., Oudkerk Pool, M. D., Peterse, E. F. P., Spada, C., Epstein, O., Fernández-Urién, I., Hofman, A., Kuipers, E. J., & Spaander, M. C. W. (2022). Population-based prevalence of gastrointestinal abnormalities at colon capsule endoscopy. Clinical Gastroenterology and Hepatology, 20(3), 692-700.e7. https://doi.org/10.1016/j.cgh.2020.10.048

[18] Carmack, S. W., Genta, R. M., Graham, D. Y., & Lauwers, G. Y. (2009). Management of gastric polyps: A pathology-based guide for gastroenterologists. Nature Reviews Gastroenterology & Hepatology, 6(6), 331–341. https://doi.org/10.1038/nrgastro.2009.70

[19] Shih, A. R., & Misdraji, J. (2017). Drug-induced pathology of the upper gastrointestinal tract. Diagnostic Histopathology, 23(2), 84–95. https://doi.org/10.1016/j.mpdhp.2017.03.002

[20] Guo, L., Gong, H., Wang, Q., Zhang, Q., Tong, H., Li, J., Lei, X., Xiao, X., Li, C., Jiang, J., Hu, B., Song, J., Tang, C., & Huang, Z. (2021). Detection of multiple lesions of gastrointestinal tract for endoscopy using artificial intelligence model: A pilot study. Surgical Endoscopy, 35(12), 6532–6538. https://doi.org/10.1007/s00464-020-08150-x

[21] Gu P, Mendonca O, Carter D, et al. AI-luminating Artificial Intelligence in Inflammatory Bowel Diseases: A Narrative Review on the Role of AI in Endoscopy, Histology, and Imaging for IBD. Inflammatory Bowel Diseases. 2024;30(12):2467-2485. doi:10.1093/ibd/izae030

[22] Goyal H, Sherazi SAA, Gupta S, et al. Application of artificial intelligence in diagnosis of pancreatic malignancies by endoscopic ultrasound: a systemic review. Therap Adv Gastroenterol. 2022;15:17562848221093873. doi:10.1177/17562848221093873

[23] Arif AA, Jiang SX, Byrne MF. Artificial intelligence in endoscopy: Overview, applications, and future directions. Saudi J Gastroenterol. 2023;29(5):269-277. doi:10.4103/sjg.sjg_286_23

[24] Chavannes M, Kysh L, Allocca M, et al. Role of artificial intelligence in imaging and endoscopy for the diagnosis, monitoring and prognostication of inflammatory bowel disease: a scoping review protocol. BMJ Open Gastroenterol. 2023;10(1):e001182. doi:10.1136/bmjgast-2023-001182

[25] Bang CS, Lee JJ, Baik GH. Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis Of Diagnostic Test Accuracy. J Med Internet Res. 2020;22(9):e21983. doi:10.2196/21983

[26] Mascarenhas Saraiva M, Ribeiro T, Afonso J, et al. Artificial Intelligence and Capsule Endoscopy: Automatic Detection of Small Bowel Blood Content Using a Convolutional Neural Network. GE Port J Gastroenterol. 2022;29(5):331-338. doi:10.1159/000518901

[27] Kröner PT, Engels MM, Glicksberg BS, et al. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol. 2021;27(40):6794-6824. doi:10.3748/wjg.v27.i40.6794Li MD, Huang ZR, Shan QY, et al. Performance and comparison of artificial intelligence and human experts in the detection and classification of colonic polyps. BMC Gastroenterol. 2022 Dec 13;22(1):517. https://doi.org/10.1186/s12876-022-02605-2

[28] Niikura R, Aoki T, Shichijo S, et al. Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer in patients who have undergone upper gastrointestinal endoscopy. Endoscopy. 2022 Aug;54(8):780-784. https://doi.org/10.1055/a-1660-6500

[29] Jong MR, Jaspers TJM, Kusters CHJ, et al. Challenges in Implementing Endoscopic Artificial Intelligence: The Impact of Real-World Imaging Conditions on Barrett's Neoplasia Detection. United European Gastroenterol J. 2025 Mar 21. https://doi.org/10.1002/ueg2.12760

[30] Kim MJ, Kim SH, Kim SM, et al. The Advent of Domain Adaptation into Artificial Intelligence for Gastrointestinal Endoscopy and Medical Imaging. Diagnostics (Basel). 2023 Sep 22;13(19):3023. https://doi.org/10.3390/diagnostics13193023

[31] Jaspers TJM, Boers TGW, Kusters CHJ, et al. Robustness evaluation of deep neural networks for endoscopic image analysis: Insights and strategies. Med Image Anal. 2024 May;94:103157. https://doi.org/10.1016/j.media.2024.103157

[32] Kang AJ, Rodrigues T, Patel RV, Keswani RN. Impact of Artificial Intelligence on Gastroenterology Trainee Education. Gastrointest Endosc Clin N Am. 2025 Apr;35(2):457-467. https://doi.org/10.1016/j.giec.2024.12.008

[33] Huang J, Zeng J, Peng J, et al. Endoscopic colorectal polyp detection based on improved YOLOv8. Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. :1-4. https://doi.org/10.1109/EMBC53108.2024.10781871

[34] Ramoni D, Scuricini A, Carbone F, et al. Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice. World J Gastroenterol. 2025 Mar 14;31(10):102725. https://doi.org/10.3748/wjg.v31.i10.102725

[35] Sultan S, Shung DL, Kolb JM, et al. AGA Living Clinical Practice Guideline on Computer-Aided Detection-Assisted Colonoscopy. Gastroenterology. 2025 Apr;168(4):691-700.https://doi.org/10.1053/j.gastro.2025.01.002

[36] Shi YH, Liu JL, Cheng CC, et al. Construction and validation of machine learning-based predictive model for colorectal polyp recurrence one year after endoscopic mucosal resection. World J Gastroenterol. 2025 Mar 21;31(11):102387. https://doi.org/10.3748/wjg.v31.i11.102387

Quality in Sport

Downloads

  • PDF

Published

2025-05-11

How to Cite

1.
JARYCH, Weronika, TOKARCZYK, Elżbieta, IGLEWSKI, Patryk, ZIEMIŃSKA, Daria, MOTOLKO, Karina, BURCZYK, Rafał, DUSZYŃSKI, Konrad, KOCIŃSKI, Michał and WENDT, Jan Reinald. Automated Recognition of Abnormalities in Gastrointestinal Endoscopic Images – Evaluation of an AI Tool for Identifying Polyps and Other Irregularities. Quality in Sport. Online. 11 May 2025. Vol. 41, p. 60070. [Accessed 28 June 2025]. DOI 10.12775/QS.2025.41.60070.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 41 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Weronika Jarych, Elżbieta Tokarczyk, Patryk Iglewski, Daria Ziemińska, Karina Motolko, Rafał Burczyk, Konrad Duszyński, Michał Kociński, Jan Reinald Wendt

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 155
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Artificial intelligence, endoscopy, gastrointestinal imaging, polyps detection, computer-aided detection, convolutional neural networks, predictive analytics in endoscopy, machine learning in healthcare
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop