The Diagnostic Value of Thermography in Oncology: Current Evidence and Future Perspectives
DOI:
https://doi.org/10.12775/QS.2025.41.59830Keywords
termography, oncology, tumor, thermogram, inflammationAbstract
Introduction and Purpose: Thermography – imaging heat patterns via infrared (IR) cameras – offers a noninvasive, radiation-free approach to detect the increased regional skin temperature associated with tumors’ hypermetabolism and angiogenesis [3]. This review examines the diagnostic potential of thermography in oncology, focusing on its role in early cancer detection and monitoring of treatment, and evaluates whether modern advancements address past concerns.
Material and methods of research: A thorough literature review was performed using PubMed and Web of Science.
Summary of Knowledge: Thermography detects infrared emission from the body’s surface to map temperature distribution [3]. Breast cancer was the first field to embrace thermography [2]. Pilot studies in dermatology show IR thermography can differentiate melanoma from benign lesions [7]. In cancer monitoring, thermography appears promising: e.g. thermal imaging of breast tumors during therapy [8]. However, limitations include dependence on tumor depth, confounding factors [3], and lack of standardized protocols leading to variable results across studies [5, 6].
Conclusions: Thermography offers a physiologic imaging perspective that, with further validation and refinement, could enhance early cancer detection and real-time monitoring in oncology practice, rather than replace existing gold-standard methods.
References
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers. CA Cancer J Clin. 2021;71(3):209-249. DOI: 10.3322/caac.21660
[2] Fraser J. Hot bodies; Cold War: the forgotten history of breast thermography. CMAJ. 2017;189(15):E573–E575. DOI: 10.1503/cmaj.160833
[3] Rakhunde MB, Gotarkar S, Choudhari SG. Thermography as a Breast Cancer Screening Technique: A Review Article. Cureus. 2022;14(11):e31251. DOI: 10.7759/cureus.31251
[4] Ng EY. A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci.2009;48(5):849-859. DOI: 10.1016/j.ijthermalsci.2008.06.015
[5] Omranipour R, Kazemian A, Alipour S, et al. Comparison of the accuracy of thermography and mammography in the detection of breast cancer. Breast Care (Basel). 2016;11(4):260-264. DOI: 10.1159/000448347
[6] Food and Drug Administration (FDA). Breast Cancer Screening: Thermogram No Substitute for Mammogram. FDA Consumer Update. Silver Spring, MD: FDA; 2017. Available at: https://www.fda.gov/consumers/consumer-updates/breast-cancer-screening-thermogram-no-substitute-mammogram
[7] Kesztyüs D, Bae H, Wilson C, Schön MP, Kesztyüs T. Non-invasive infrared thermography for screening, diagnosis and monitoring of skin cancer. J Dtsch Dermatol Ges. 2025;23(1):7-17. DOI: 10.1111/ddg.15598
[8] Hoffer OA, Ben-David MA, Katz E, et al. Thermal imaging as a tool for evaluating tumor treatment efficacy. J Biomed Opt. 2018;23(5):058001. DOI: 10.1117/1.JBO.23.5.058001
[9] Berberian N, Sargsyan H, Sahakyan L, et al. Evaluation of an AI-powered portable thermal imaging solution as a pre-screening tool for breast cancer. Cancer Screen Prev. 2024;3(1):8-15. DOI: 10.14218/CSP.2023.00034S
[10] Mohamed EA, Rashed EA, Gaber T, et al. Deep learning model for fully automated breast cancer detection from thermograms. PLoS One. 2022;17(1):e0262349. DOI: 10.1371/journal.pone.0262349
[11] Chakraborty M, Mukhopadhyay S, Dasgupta A, et al. A new approach of oral cancer detection using bilateral texture features in digital infrared thermal images. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1377-1380. DOI: 10.1109/EMBC.2016.7590964
[12] Speeckaert R, Hoorens I, Lambert J, Speeckaert M, van Geel N. The value of infrared thermography in skin diseases: a scoping review. J Eur Acad Dermatol Venereol. 2024;38(9):1723-1737. DOI: 10.1111/jdv.19796
[13] Singh D, Singh AK. Role of image thermography in early breast cancer detection – past, present and future. Comput Methods Programs Biomed. 2020;183:105074. DOI: 10.1016/j.cmpb.2019.105074
[14] Parisky YR, Sardi A, Hamm R, et al. Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. AJR Am J Roentgenol. 2003;180(1):263-269. DOI: 10.2214/ajr.180.1.1800263
[15] Fitzgerald A, Berentson-Shaw J. Thermography as a screening and diagnostic tool: a systematic review. N Z Med J. 2012;125(1351):80-91. PMID: 22426613
[16] Arora N, Martins D, Ruggerio D, et al. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg. 2008;196(4):523-526. DOI: 10.1016/j.amjsurg.2008.06.015
[17] Vreugdenburg TD, Willis CD, Mundy L, Hiller JE. A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis. Breast Cancer Res Treat.2013;137(3):665-676. DOI: 10.1007/s10549-012-2393-x
[18] Wu Q, Li J, Sun S, et al. Thermal tomography for monitoring tumor response to neoadjuvant chemotherapy in locally advanced breast cancer. Oncotarget. 2017;8(40):68974-68983. DOI: 10.18632/oncotarget.16569
[19] Kashyap U, Sarkar S, Saha SK. Study of heat stress dynamic IR thermography for detecting surface cancerous tissue. J Med Eng Technol. 2020;44(6):284-298. DOI: 10.1080/03091902.2020.1772390
[20] Gautherie M, Gros CM. Breast thermography and cancer risk prediction. Cancer. 1980;45(1 ):51-56. PMID: 7351006
[21] Kennedy DA, Lee T, Seely D. A comparative review of thermography as a breast cancer screening technique. Integr Cancer Ther. 2009;8(1):9-16. DOI: 10.1177/1534735408326171
[22] Magalhães C, Vardasca R, Rebelo M, et al. Distinguishing melanocytic nevi from melanomas using static and dynamic infrared thermal imaging. J Eur Acad Dermatol Venereol. 2019;33(9):1700-1705. DOI: 10.1111/jdv.15611
[23] Magalhães C, Mendes J, Vardasca R. Recent use of medical infrared thermography in skin neoplasms: a systematic review. Skin Res Technol. 2018;24(4):587-591. DOI: 10.1111/srt.12469
[24] Mačianskytė D, Adaškevičius R, et al. Automatic detection of human maxillofacial tumors by using thermal imaging: a preliminary study. Sensors (Basel). 2022;22(6):2227. DOI: 10.3390/s22051985
[25] Hodorowicz-Zaniewska D, Zurrida S, Kotlarz A, et al. A prospective pilot study on use of liquid crystal thermography to detect early breast cancer. Integr Cancer Ther. 2020;19:1534735420915778. DOI: 10.1177/1534735420915778
[26] Yousefi B, Memarzadeh Sharifipour H, Maldague XPV. Embedded Deep Regularized Block HSIC Thermomics for Early Diagnosis of Breast Cancer. arXiv preprint arXiv:2106.02106. 2021 Jun 3,
DOI: 10.48550/arXiv.2106.02106
[27] Liao J, Gui Y, Li Z, et al. Artificial intelligence-assisted ultrasound image analysis to discriminate early breast cancer in Chinese population: a retrospective, multicentre, cohort study. Eur J Radiol. 2023 May 25:60:102001. DOI:10.1016/j.eclinm.2023.102001
[28] MD Anderson Cancer Center. Mammograms vs. thermography: what you need to know. MD Anderson Cancer Center. 2020 Oct 23
[29] Mandelson M.T., Oestreicher N., Porter P.L., et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000;92(13):1081–1087. DOI: 10.1093/jnci/92.13.1081
[30] Dong F, Tao C, Wu J, et al. Detection of cervical lymph node metastasis from oral cavity cancer using a non-radiating, noninvasive digital infrared thermal imaging system. Sci Rep. May 08 2018; 8(1): 7219. DOI: 10.1038/s41598-018-24195-4
[31] Morales-Cervantes A, Kolosovas-Machuca ES, Guevara E, et al. An automated method for the evaluation of breast cancer using infrared thermography. EXCLI J. 2018; 17: 989-998. DOI: 10.17179/excli2018-1735
[32] Neal CH, Flynt KA, Jeffries DO, et al. Breast Imaging Outcomes following Abnormal Thermography. Acad Radiol. Mar 2018; 25(3): 273-278. DOI: 10.1016/j.acra.2017.10.015
[33] Rassiwala M, Mathur P, Mathur R, et al. Evaluation of digital infra-red thermal imaging as an adjunctive screening method for breast carcinoma: a pilot study. Int J Surg. Dec 2014; 12(12): 1439-43. DOI: 10.1016/j.ijsu.2014.10.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Anna Bioły, Piotr Marcjasz, Patryk Dryja, Agata Boczar, Agnieszka Buliszak, Monika Babczyńska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 152
Number of citations: 0