The Impact of Physical Activity on Retinal Health and Various Retinal Diseases
DOI:
https://doi.org/10.12775/QS.2025.40.59790Keywords
phisycal activity, ocular diseases, retina, glaucoma, diabetic retinopathy, oxidative stressAbstract
Introduction:
The health benefits of physical activity (PA) are widely known. Currently, its role in maintaining the health of the retina and in treating various diseases of the eye is being intensively studied, which are becoming an increasingly serious public health concern.
Purpose of the Work:
The aim of this study is to systematize knowledge about the impact of PA on retinal health and to raise awareness of this issue among the public and healthcare professionals.
Materials and Methods:
This paper is based on a comprehensive review of scientific research conducted worldwide. In the searching process the terms “retina”, “physical activity”, “ocular diseases”, “glaucoma”, “diabetic retinopathy” and “oxidative stress” were used.
Results:
PA has the potential to counteract microvascular regeneration, promote the body's antioxidant capabilities and enhance anti-inflammatory responses. The protective effect has been observed in both physiological and pathological conditions.
Conclusions:
PA represents a promising strategy for maintaining retinal health and preventing the progression of various retinal diseases, and may improve the approach to their treatment. Therefore, further research is necessary to establish optimal guidelines regarding the type and intensity of exercise in the context of retinal diseases.
References
Li HY, Rong SS, Hong X, Guo R, Yang FZ, Liang YY, Li A, So KF. Exercise and retinal health. Restor Neurol Neurosci. 2019;37(6):571-581. doi: 10.3233/RNN-190945.
Zhang Q, Jiang Y, Deng C, Wang J. Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Front Med (Lausanne). 2024 Mar 22;11:1353624. doi: 10.3389/fmed.2024.1353624. Erratum in: Front Med (Lausanne). 2024 May 16;11:1427623. doi: 10.3389/fmed.2024.1427623.
Thapa R, Khanal S, Tan HS, Thapa SS, van Rens GHMB. Prevalence, Pattern and Risk Factors of Retinal Diseases Among an Elderly Population in Nepal: The Bhaktapur Retina Study. Clin Ophthalmol. 2020 Jul 24;14:2109-2118. doi: 10.2147/OPTH.S262131.
Prem Senthil M, Khadka J, Gilhotra JS, Simon S, Pesudovs K. Exploring the quality of life issues in people with retinal diseases: a qualitative study. J Patient Rep Outcomes. 2017;1(1):15. doi: 10.1186/s41687-017-0023-4. Epub 2017 Sep 21.
Cui B, Zhu Y, Zhang X, He K, Shi Y, Yu J, Zhou W, Zhu Y, Yan H. Association of Physical Activity with Retinal Thickness and Vascular Structure in Elderly Chinese Population. Ophthalmic Res. 2023;66(1):281-292. doi: 10.1159/000527448. Epub 2022 Oct 17.
Chou W, Liu YF, Lin CH, Lin MT, Chen CC, Liu WP, Chang CP, Chio CC. Exercise Rehabilitation Attenuates Cognitive Deficits in Rats with Traumatic Brain Injury by Stimulating the Cerebral HSP20/BDNF/TrkB Signalling Axis. Mol Neurobiol. 2018 Nov;55(11):8602-8611. doi: 10.1007/s12035-018-1011-2. Epub 2018 Mar 25.
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci. 2021 Sep 15;7:633-664. doi: 10.1146/annurev-vision-100419-114940. Epub 2021 Jun 1.
Kim CS, Park S, Chun Y, Song W, Kim HJ, Kim J. Treadmill Exercise Attenuates Retinal Oxidative Stress in Naturally-Aged Mice: An Immunohistochemical Study. Int J Mol Sci. 2015 Sep 2;16(9):21008-20. doi: 10.3390/ijms160921008.
Wadley AJ, Veldhuijzen van Zanten JJ, Stavropoulos-Kalinoglou A, Metsios GS, Smith JP, Kitas GD, Aldred S. Three months of moderate-intensity exercise reduced plasma 3-nitrotyrosine in rheumatoid arthritis patients. Eur J Appl Physiol. 2014;114(7):1483-92. doi: 10.1007/s00421-014-2877-y. Epub 2014 Apr 10.
Chrysostomou V, Kezic JM, Trounce IA, Crowston JG. Forced exercise protects the aged optic nerve against intraocular pressure injury. Neurobiol Aging. 2014 Jul;35(7):1722-5. doi: 10.1016/j.neurobiolaging.2014.01.019. Epub 2014 Jan 23.
Streese L, Guerini C, Bühlmayer L, Lona G, Hauser C, Bade S, Deiseroth A, Hanssen H. Physical activity and exercise improve retinal microvascular health as a biomarker of cardiovascular risk: A systematic review. Atherosclerosis. 2020 Dec;315:33-42. doi: 10.1016/j.atherosclerosis.2020.09.017. Epub 2020 Sep 23.
Shukla UV, Tripathy K. Diabetic Retinopathy. 2023 Aug 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–.
Rai BB, Maddess T, Nolan CJ. Functional diabetic retinopathy: A new concept to improve management of diabetic retinal diseases. Surv Ophthalmol. 2025 Mar-Apr;70(2):232-240. doi: 10.1016/j.survophthal.2024.11.010. Epub 2024 Nov 23.
Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, Kirwan JP, Zierath JR. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022 Feb 1;54(2):353-368. doi: 10.1249/MSS.0000000000002800.
Soleimani A, Soltani P, Karimi H, Mirzaei M, Esfahanian F, Yavari M, Esfahani MP. The effect of moderate-intensity aerobic exercise on non-proliferative diabetic retinopathy in type II diabetes mellitus patients: A clinical trial. Microvasc Res. 2023 Sep;149:104556. doi: 10.1016/j.mvr.2023.104556. Epub 2023 Jun 2.
Cheng CK, Shang W, Liu J, Cheang WS, Wang Y, Xiang L, Lau CW, Luo JY, Ng CF, Huang Y, Wang L. Activation of AMPK/miR-181b Axis Alleviates Endothelial Dysfunction and Vascular Inflammation in Diabetic Mice. Antioxidants (Basel). 2022 Jun 9;11(6):1137. doi: 10.3390/antiox11061137.
Ren C, Liu W, Li J, Cao Y, Xu J, Lu P. Physical activity and risk of diabetic retinopathy: a systematic review and meta-analysis. Acta Diabetol. 2019 Aug;56(8):823-837. doi: 10.1007/s00592-019-01319-4. Epub 2019 Mar 21.
Alten F, Eter N, Schmitz B. Differential effects of high-intensity interval training (HIIT) on choriocapillaris perfusion in healthy adults and patients with type 1 diabetes mellitus (T1DM). Microvasc Res. 2021 May;135:104128. doi: 10.1016/j.mvr.2020.104128. Epub 2021 Jan 6.
Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet. 2023 Nov 11;402(10414):1788-1801. doi: 10.1016/S0140-6736(23)01289-8. Epub 2023 Sep 21.
Yuan Y, Lin TPH, Gao K, Zhou R, Radke NV, Lam DSC, Zhang X. Aerobic exercise reduces intraocular pressure and expands Schlemm's canal dimensions in healthy and primary open-angle glaucoma eyes. Indian J Ophthalmol. 2021 May;69(5):1127-1134. doi: 10.4103/ijo.IJO_2858_20.
Meier NF, Lee DC, Sui X, Blair SN. Physical Activity, Cardiorespiratory Fitness, and Incident Glaucoma. Med Sci Sports Exerc. 2018 Nov;50(11):2253-2258. doi: 10.1249/MSS.0000000000001692.
Yokota S, Takihara Y, Kimura K, Takamura Y, Inatani M. The relationship between self-reported habitual exercise and visual field defect progression: a retrospective cohort study. BMC Ophthalmol. 2016 Aug 23;16(1):147. doi: 10.1186/s12886-016-0326-x.
Madjedi KM, Stuart KV, Chua SYL, Ramulu PY, Warwick A, Luben RN, Sun Z, Chia MA, Aschard H, Wiggs JL, Kang JH, Pasquale LR, Foster PJ, Khawaja AP; Modifiable Risk Factors for Glaucoma Collaboration and the UK Biobank Eye and Vision Consortium. The Association of Physical Activity with Glaucoma and Related Traits in the UK Biobank. Ophthalmology. 2023 Oct;130(10):1024-1036. doi: 10.1016/j.ophtha.2023.06.009. Epub 2023 Jun 17.
He YY, Wang L, Zhang T, Weng SJ, Lu J, Zhong YM. Aerobic exercise delays retinal ganglion cell death after optic nerve injury. Exp Eye Res. 2020 Nov;200:108240. doi: 10.1016/j.exer.2020.108240. Epub 2020 Sep 11.
Lee MJ, Wang J, Friedman DS, Boland MV, De Moraes CG, Ramulu PY. Greater Physical Activity Is Associated with Slower Visual Field Loss in Glaucoma. Ophthalmology. 2019 Jul;126(7):958-964. doi: 10.1016/j.ophtha.2018.10.012. Epub 2018 Oct 10.
Yan X, Li M, Song Y, Guo J, Zhao Y, Chen W, Zhang H. Influence of Exercise on Intraocular Pressure, Schlemm's Canal, and the Trabecular Meshwork. Invest Ophthalmol Vis Sci. 2016 Sep 1;57(11):4733-9. doi: 10.1167/iovs.16-19475.
McMonnies CW. Intraocular pressure and glaucoma: Is physical exercise beneficial or a risk? J Optom. 2016 Jul-Sep;9(3):139-47. doi: 10.1016/j.optom.2015.12.001. Epub 2016 Jan 12.
Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog Retin Eye Res. 2020 Jan;74:100771. doi: 10.1016/j.preteyeres.2019.07.004. Epub 2019 Jul 26.
Ulańczyk Z, Grabowicz A, Cecerska-Heryć E, Śleboda-Taront D, Krytkowska E, Mozolewska-Piotrowska K, Safranow K, Kawa MP, Dołęgowska B, Machalińska A. Dietary and Lifestyle Factors Modulate the Activity of the Endogenous Antioxidant System in Patients with Age-Related Macular Degeneration: Correlations with Disease Severity. Antioxidants (Basel). 2020 Oct 5;9(10):954. doi: 10.3390/antiox9100954.
Zhang X, Girardot PE, Sellers JT, Li Y, Wang J, Chrenek MA, Wu W, Skelton H, Nickerson JM, Pardue MT, Boatright JH. Wheel running exercise protects against retinal degeneration in the I307N rhodopsin mouse model of inducible autosomal dominant retinitis pigmentosa. Mol Vis. 2019 Aug 21;25:462-476.
Monteiro-Junior RS, de Tarso Maciel-Pinheiro P, da Matta Mello Portugal E, da Silva Figueiredo LF, Terra R, Carneiro LSF, Rodrigues VD, Nascimento OJM, Deslandes AC, Laks J. Effect of Exercise on Inflammatory Profile of Older Persons: Systematic Review and Meta-Analyses. J Phys Act Health. 2018 Jan 1;15(1):64-71. doi: 10.1123/jpah.2016-0735. Epub 2017 Oct 26.
Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011 Sep;30(5):343-58. doi: 10.1016/j.preteyeres.2011.05.002. Epub 2011 May 25.
Youssef PN, Sheibani N, Albert DM. Retinal light toxicity. Eye (Lond). 2011 Jan;25(1):1-14. doi: 10.1038/eye.2010.149. Epub 2010 Oct 29.
Mees LM, Coulter MM, Chrenek MA, Motz CT, Landis EG, Boatright JH, Pardue MT. Low-Intensity Exercise in Mice Is Sufficient to Protect Retinal Function During Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1328-1335. doi: 10.1167/iovs.18-25883.
Lawson EC, Han MK, Sellers JT, Chrenek MA, Hanif A, Gogniat MA, Boatright JH, Pardue MT. Aerobic exercise protects retinal function and structure from light-induced retinal degeneration. J Neurosci. 2014 Feb 12;34(7):2406-12. doi: 10.1523/JNEUROSCI.2062-13.2014.
Wang J, Li M, Geng Z, Khattak S, Ji X, Wu D, Dang Y. Role of Oxidative Stress in Retinal Disease and the Early Intervention Strategies: A Review. Oxid Med Cell Longev. 2022 Oct 14;2022:7836828. doi: 10.1155/2022/7836828.
Kowluru RA. Cross Talks between Oxidative Stress, Inflammation and Epigenetics in Diabetic Retinopathy. Cells. 2023 Jan 12;12(2):300. doi: 10.3390/cells12020300.
Lu Y, Dong Y, Tucker D, Wang R, Ahmed ME, Brann D, Zhang Q. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease. J Alzheimers Dis. 2017;56(4):1469-1484. doi: 10.3233/JAD-160869.
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol. 2018;16(7):1018-1035. doi: 10.2174/1570159X16666180419121247.
Allen RS, Hanif AM, Gogniat MA, Prall BC, Haider R, Aung MH, Prunty MC, Mees LM, Coulter MM, Motz CT, Boatright JH, Pardue MT. TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina. Eur J Neurosci. 2018 May;47(10):1254-1265. doi: 10.1111/ejn.13909. Epub 2018 Apr 3.
Christensen I, Lu B, Yang N, Huang K, Wang P, Tian N. The Susceptibility of Retinal Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific. Front Neurosci. 2019 Mar 15;13:219. doi: 10.3389/fnins.2019.00219.
Lee J, Kim Y, Liu T, Hwang YJ, Hyeon SJ, Im H, Lee K, Alvarez VE, McKee AC, Um SJ, Hur M, Mook-Jung I, Kowall NW, Ryu H. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease. Aging Cell. 2018 Feb;17(1):e12679. doi: 10.1111/acel.12679. Epub 2017 Nov 11.
Dai S, Wang C, Feng L, Zhang C, Zhang W, He Y, Zhou X, Xia X, Chen B, Song W. Protective activity of tert-butylhydroquinone against oxidative stress and apoptosis induced by glutamate agonizts in R28 cells and mice retina. Biomed Pharmacother. 2022 Aug;152:113117. doi: 10.1016/j.biopha.2022.113117. Epub 2022 May 30.
Abd Ghapor AA, Abdul Nasir NA, Iezhitsa I, Agarwal R, Razali N. Neuroprotection by trans-resveratrol in rats with N-methyl-D-aspartate (NMDA)-induced retinal injury: Insights into the role of adenosine A1 receptors. Neurosci Res. 2023 Aug;193:1-12. doi: 10.1016/j.neures.2023.02.004. Epub 2023 Feb 14.
Zhu MM, Lai JSM, Choy BNK, Shum JWH, Lo ACY, Ng ALK, Chan JCH, So KF. Physical exercise and glaucoma: a review on the roles of physical exercise on intraocular pressure control, ocular blood flow regulation, neuroprotection and glaucoma-related mental health. Acta Ophthalmol. 2018 Sep;96(6):e676-e691. doi: 10.1111/aos.13661. Epub 2018 Jan 16.
Lin JB, Kubota S, Ban N, Yoshida M, Santeford A, Sene A, Nakamura R, Zapata N, Kubota M, Tsubota K, Yoshino J, Imai SI, Apte RS. NAMPT-Mediated NAD(+) Biosynthesis Is Essential for Vision In Mice. Cell Rep. 2016 Sep 27;17(1):69-85. doi: 10.1016/j.celrep.2016.08.073.
Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019 Feb;18(1):e12876. doi: 10.1111/acel.12876. Epub 2018 Nov 15.
Russo R, Varano GP, Adornetto A, Nazio F, Tettamanti G, Girardello R, Cianfanelli V, Cavaliere F, Morrone LA, Corasaniti MT, Cecconi F, Bagetta G, Nucci C. Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival. Cell Death Dis. 2018 Sep 24;9(10):981. doi: 10.1038/s41419-018-1044-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Magdalena Kwiatkowska, Gabriela Majta, Sara Kusy

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 14
Number of citations: 0