The Role of Gut Microbiota in the Prevention or Development of Atherosclerosis – A Review
DOI:
https://doi.org/10.12775/QS.2025.40.59609Keywords
Gut microbiota, Atherosclerosis, Dysbiosis, SCFA, TMAO, Probiotics, Cardiovascular healthAbstract
Aim of the study:
This study aims to consolidate current knowledge on the role of gut microbiota in atherosclerosis, examining its mechanisms of action, the impact of dietary patterns on microbial composition, and emerging therapeutic interventions.
Materials and methods:
A systematic review of scientific literature was conducted through PubMed, Google Scholar, and other databases, focusing on diagnostic advancements, insights into the role of gut microbiota in atherosclerosis, and innovative therapeutic methods.
Main results:
The findings reveal that gut microbiota exerts a dual influence on atherosclerosis development through its metabolites, with SCFAs offering anti-inflammatory and cardioprotective effects, while TMAO promotes endothelial dysfunction and pro-thrombotic states. Diet emerges as a critical factor, with fiber-rich and Mediterranean-style diets enhancing SCFA production and reducing TMAO levels, whereas Western diets exacerbate dysbiosis and atherogenesis.
Conclusions:
The gut microbiota represents a dynamic and modifiable target for the prevention and management of atherosclerosis. Advancements in diagnostic tools, dietary interventions, and microbiota-based therapies provide new opportunities to address cardiovascular health challenges.
References
1. Abdolmaleky, H. M., & Zhou, J. (2024). Gut microbiota dysbiosis, oxidative stress, inflammation, and epigenetic alterations in metabolic diseases. Antioxidants, 13(8), 985. https://doi.org/10.3390/antiox13080985
2. Abrignani, V., Salvo, A., Pacinella, G., & Tuttolomondo, A. (2024). The Mediterranean Diet, its mi-crobiome connections, and Cardiovascular Health: A Narrative review. International Journal of Molecular Sciences, 25(9), 4942. https://doi.org/10.3390/ijms25094942
3. Araújo, J. R., Marques, C., Rodrigues, C., Calhau, C., & Faria, A. (2024). The metabolic and endo-crine impact of diet-derived gut microbiota metabolites on ageing and longevity. Ageing Research Reviews, 100, 102451. https://doi.org/10.1016/j.arr.2024.102451
4. Bilson, J., Scorletti, E., Swann, J. R., & Byrne, C. D. (2024). Bile acids as emerging players at the intersection of steatotic liver disease and cardiovascular diseases. Biomolecules, 14(7), 841. https://doi.org/10.3390/biom14070841
5. Cancro, F. P., Bellino, M., Silverio, A., Di Maio, M., Esposito, L., Palumbo, R., La Manna, M., For-misano, C., Ferruzzi, G., Vecchione, C., & Galasso, G. (2024). Novel targets and strategies ad-dressing residual cardiovascular risk in post-acute coronary syndromes patients. Translational Medicine UniSa, 26(2), 99–110. https://doi.org/10.37825/2239-9747.1058
6. Canfora, E. E., Meex, R. C. R., Venema, K., & Blaak, E. E. (2019). Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews Endocrinology, 15(5), 261–273. https://doi.org/10.1038/s41574-019-0156-z
7. Dinakis, E., O’Donnell, J. A., & Marques, F. Z. (2024). The gut–immune axis during hypertension and cardiovascular diseases. Acta Physiologica, 240(8). https://doi.org/10.1111/apha.14193
8. Ezenabor, E. H., Adeyemi, A. A., & Adeyemi, O. S. (2024). Gut microbiota and metabolic syndro-me: relationships and opportunities for new therapeutic strategies. Scientifica, 2024(1). https://doi.org/10.1155/2024/4222083
9. Flori, L., Benedetti, G., Martelli, A., & Calderone, V. (2024). Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmaco-logical Research, 207, 107334. https://doi.org/10.1016/j.phrs.2024.107334
10. Fu, Y., Hou, X., Feng, Z., Feng, H., & Li, L. (2024). Research progress in the relationship between gut microbiota metabolite trimethylamine N-oxide and ischemic stroke. PubMed, 49(3), 447–456. https://doi.org/10.11817/j.issn.1672-7347.2024.230427
11. Jarmukhanov, Z., Mukhanbetzhanov, N., Kozhakhmetov, S., Nurgaziyev, M., Sailybayeva, A., Bekbossynova, M., & Kushugulova, A. (2024). The association between the gut microbiota meta-bolite trimethylamine N-oxide and heart failure. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1440241
12. Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., & Kimura, I. (2015). Dietary gut micro-bial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 7(4), 2839–2849. https://doi.org/10.3390/nu7042839
13. Katsimichas, T., Antonopoulos, A. S., Katsimichas, A., Ohtani, T., Sakata, Y., & Tousoulis, D. (2019). The intestinal microbiota and cardiovascular disease. Cardiovascular Research, 115(10), 1471–1486. https://doi.org/10.1093/cvr/cvz135
14. Leonov, G., Salikhova, D., Starodubova, A., Vasilyev, A., Makhnach, O., Fatkhudinov, T., & Goldsh-tein, D. (2024). Oral microbiome dysbiosis as a risk factor for stroke: A Comprehensive review. Microorganisms, 12(8), 1732. https://doi.org/10.3390/microorganisms12081732
15. Lin, Y., He, C., Liu, J., Chung, H., Chen, Z., & Wong, W. (2024). Houttuynia cordata Thunb. Extracts Alleviate Atherosclerosis and Modulate Gut Microbiota in Male Hypercholesterolemic Hamsters. Nutrients, 16(19), 3290. https://doi.org/10.3390/nu16193290
16. Liu, S., Fu, J., Liao, Z., Liu, Y., He, J., He, L., Bai, J., Yang, J., Niu, S., & Guo, J. (2024). Z-Ligustilide Alleviates Atherosclerosis by Reconstructing Gut Microbiota and Sustaining Gut Bar-rier Integrity through Activation of Cannabinoid Receptor 2. Phytomedicine, 135, 156117. https://doi.org/10.1016/j.phymed.2024.156117
17. Liu, Y., Long, Y., Fang, J., & Liu, G. (2024). Advances in the Anti-Atherosclerotic mechanisms of epigallocatechin gallate. Nutrients, 16(13), 2074. https://doi.org/10.3390/nu16132074
18. Lu, C., Liu, D., Wu, Q., Zeng, J., Xiong, Y., & Luo, T. (2024). EphA2 blockage ALW-II-41-27 al-leviates atherosclerosis by remodeling gut microbiota to regulate bile acid metabolism. Npj Bio-films and Microbiomes, 10(1). https://doi.org/10.1038/s41522-024-00585-7
19. Mao, Y., Kong, C., Zang, T., You, L., Wang, L., Shen, L., & Ge, J. (2024). Impact of the gut micro-biome on atherosclerosis. mLife, 3(2), 167–175. https://doi.org/10.1002/mlf2.12110
20. Ronen, D., Rokach, Y., Abedat, S., Qadan, A., Daana, S., Amir, O., & Asleh, R. (2024). Human gut microbiota in cardiovascular disease. Comprehensive Physiology, 5449–5490. https://doi.org/10.1002/cphy.c230012
21. Singh, A., Kishore, P. S., & Khan, S. (2024). From Microbes to myocardium: A Comprehensive review of the impact of the Gut-Brain axis on cardiovascular disease. Cureus. https://doi.org/10.7759/cureus.70877
22. Sulaiman, D., Reddy, S. T., & Fogelman, A. M. (2024). Evidence further linking the intestine to cardiovascular disease. Current Opinion in Lipidology, 35(5), 223–227. https://doi.org/10.1097/mol.0000000000000944
23. Sun, Y., Lin, X., Liu, Z., Hu, L., Sun, P., Shen, G., Fan, F., Zhang, Y., & Li, J. (2024). Association be-tween plasma trimethylamine N-oxide and coronary heart disease: new insights on sex and age differences. Frontiers in Cardiovascular Medicine, 11. https://doi.org/10.3389/fcvm.2024.1397023
24. Usman, I., Anwar, A., Shukla, S., & Pathak, P. (2024). Mechanistic review on the role of gut micro-biota in the pathology of cardiovascular diseases. Cardiovascular & Haematological Disorders - Drug Targets, 24(1), 13–39. https://doi.org/10.2174/011871529x310857240607103028
25. Velasquez, M., Ramezani, A., Manal, A., & Raj, D. (2016). Trimethylamine N-Oxide: The Good, the bad and the Unknown. Toxins, 8(11), 326. https://doi.org/10.3390/toxins8110326
26. Verhaar, B. J. H., Prodan, A., Nieuwdorp, M., & Muller, M. (2020). Gut microbiota in hypertension and atherosclerosis: A review. Nutrients, 12(10), 2982. https://doi.org/10.3390/nu12102982
27. Wakamatsu, T., Yamamoto, S., Yoshida, S., & Narita, I. (2024). Indoxyl Sulfate-Induced ma-crophage toxicity and therapeutic strategies in uremic atherosclerosis. Toxins, 16(6), 254. https://doi.org/10.3390/toxins16060254
28. Wang, T., Wu, H., Shi, X., Dai, M., & Liu, Y. (2024). Aminoadipic acid aggravates atherosclerotic vascular inflammation through ROS/TXNIP/NLRP3 pathway, a harmful microbial metabolite re-duced by paeonol. The International Journal of Biochemistry & Cell Biology, 177, 106678. https://doi.org/10.1016/j.biocel.2024.106678
29. Wang, W., Fan, Z., Yan, Q., Pan, T., Luo, J., Wei, Y., Li, B., Fang, Z., & Lu, W. (2024). Gut microbio-ta determines the fate of dietary fiber-targeted interventions in host health. Gut Microbes, 16(1). https://doi.org/10.1080/19490976.2024.2416915
30. Xin, M., Xu, A., Tian, J., Wang, L., He, Y., Jiang, H., Yang, B., Li, B., & Sun, Y. (2024). Anthocya-nins as natural bioactives with anti-hypertensive and atherosclerotic potential: Health benefits and recent advances. Phytomedicine, 132, 155889. https://doi.org/10.1016/j.phymed.2024.155889
31. Zhang, K., Zeng, Y., Li, J., Huang, Y., Zhang, N., Gong, Y., Xiao, K., Chen, J., Chen, T., Qiu, H., Lei, S., Yan, F., Lang, C., Duan, X., & Dong, X. (2024). Inulin alleviates atherosclerosis through impro-ving lipid metabolism, inflammation, and gut microbiota in ApoE-knockout mice: the short-chain is more efficacious. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1445528
32. Zhu, J., Lyu, J., Zhao, R., Liu, G., & Wang, S. (2023). Gut macrobiotic and its metabolic pathways modulate cardiovascular disease. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1272479
33. Zhu, Y., Yin, C., & Wang, Y. (2024). Probiotic Enterococcus Faecium Attenuated Atherosclerosis by Improving SCFAs Associated with Gut Microbiota in ApoE−/− Mice. Bioengineering, 11(10), 1033. https://doi.org/10.3390/bioengineering11101033
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jakub Początek, Michał Piotrowski, Piotr Serwicki, Szczepan Pośpiech, Jakub Prosowski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 65
Number of citations: 0