Alzheimer’s Disease in the Age of Precision Medicine: Advances in Pathophysiology, Clinical Management and Therapeutic Strategies
DOI:
https://doi.org/10.12775/QS.2025.35.59608Keywords
Alzheimer's disease, amyloid, tau, Mitochondrial Function, Neuroinflammation, Biomarkers, monoclonal antibodies, neuroprotection, AI, personalised medicineAbstract
Aim of the study:
The aim of this study is to provide a comprehensive review of recent advancements in Alzheimer’s disease (AD), focusing on its complex pathophysiology, diagnostic methods, and emerging therapeutic strategies.
Materials and methods:
A detailed analysis of recent literature was conducted, reviewing major pathophysiological mechanisms including amyloid-beta accumulation, tau pathology, mitochondrial dysfunction, and chronic neuroinflammation. Diagnostic methods were evaluated, emphasizing biomarker-based approaches and the integration of artificial intelligence (AI) for improved precision in early detection.
Main results:
The analysis revealed that currently approved therapies, such as cholinesterase inhibitors and NMDA receptor antagonists, provide only symptomatic relief without significantly slowing disease progression. New therapeutic approaches targeting multiple pathways, including monoclonal antibodies against amyloid and tau, mitochondrial modulators, anti-inflammatory drugs, and gene therapy, show potential but face clinical validation challenges. AI-based technologies have significantly enhanced diagnostic accuracy, allowing personalized patient management and better disease staging.
Conclusions:
The future management of Alzheimer’s disease will likely require a multimodal strategy integrating advanced diagnostic tools, personalized therapies, and targeted interventions addressing diverse disease mechanisms. Overcoming current research limitations and healthcare accessibility issues will be critical to translating these innovations into effective clinical practice.
References
1.Aggidis A, Devitt G, Zhang Y, Chatterjee S, Townsend D, Fullwood NJ, Ortega ER, Tarutani A, Hasegawa M, Cooper A, et al. A novel peptide‐based tau aggregation inhibitor as a potential therapeutic for Alzheimer’s disease and other tauopathies. Alzheimer’s & Dementia. 2024;20(11):7788–7804. doi:10.1002/alz.14246.
2.Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25(24):5789. doi:10.3390/molecules25245789.
3.Da Silva BR. Epigenetics and Alzheimer’s Disease: A Literature Review. Alzheimer’s & Dementia. 2024;20(S1):e091762. doi:10.1002/alz.091762.
4.De Lima EP, Laurindo LF, Catharin VCS, Direito R, Tanaka M, Jasmin Santos German I, Lamas CB, Guiguer EL, Araújo AC, Fiorini AMR, et al. Polyphenols, Alkaloids, and Terpenoids Against Neurodegeneration: Evaluating the Neuroprotective Effects of Phytocompounds Through a Comprehensive Review of the Current Evidence. Metabolites. 2025;15(2):124. doi:10.3390/metabo15020124.
5.Graff-Radford J, Yong KXX, Apostolova LG, Bouwman FH, Carrillo M, Dickerson BC, Rabinovici GD, Schott JM, Jones DT, Murray ME. New insights into atypical Alzheimer’s disease in the era of biomarkers. The Lancet Neurology. 2021;20(3):222–234. doi:10.1016/S1474-4422(20)30440-3.
6.Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, et al. A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer’s Disease. Frontiers in Immunology. 2020;11:456. doi:10.3389/fimmu.2020.00456.
7.Hitt BD, Gupta A, Singh R, Yang T, Beaver JD, Shang P, White CL, Joachimiak LA, Diamond MI. Anti-tau antibodies targeting a conformation-dependent epitope selectively bind seeds. Journal of Biological Chemistry. 2023;299(11):105252. doi:10.1016/j.jbc.2023.105252.
8.Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, et al. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia. 2018;14(4):535–562. doi:10.1016/j.jalz.2018.02.018.
9.Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules. 2019;10(1):59. doi:10.3390/biom10010059.
10.Lei P, Ayton S, Bush AI. The essential elements of Alzheimer’s disease. Journal of Biological Chemistry. 2021;296:100105. doi:10.1074/jbc.REV120.008207.
11.Yelanchezian YM, Waldvogel HJ, Faull RLM, Kwakowsky A. Neuroprotective Effect of Caffeine in Alzheimer’s Disease. Molecules. 2022;27(12):3737. doi:10.3390/molecules27123737.
12.Malhis M, Kaniyappan S, Aillaud I, Chandupatla RR, Ramirez LM, Zweckstetter M, Horn AHC, Mandelkow E, Sticht H, Funke SA. Potent Tau Aggregation Inhibitor D‐Peptides Selected against Tau‐Repeat 2 Using Mirror Image Phage Display. ChemBioChem. 2021;22(21):3049–3059. doi:10.1002/cbic.202100287.
13.Rahman A, Hossen MA, Chowdhury MFI, Bari S, Tamanna N, Sultana SS, Haque SN, Al Masud A, Saif-Ur-Rahman KM. Aducanumab for the treatment of Alzheimer’s disease: A systematic review. Psychogeriatrics. 2023;23(3):512–522. doi:10.1111/psyg.12944.
14.Rehan D, Szydziak J, Hrapkowicz A, Janowska K, Szeidl O, Wołoszczak J, Mioskowska A, Dąbkowska D. The effectiveness of music therapy for the treatment of Alzheimer’s disease. Journal of Education, Health and Sport. 2024;76:56407. doi:10.12775/JEHS.2024.76.56407.
15.Rostagno AA. Pathogenesis of Alzheimer’s Disease. International Journal of Molecular Sciences. 2022;24(1):107. doi:10.3390/ijms24010107.
16.Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, et al. Alzheimer’s disease: A comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Frontiers in Medicine. 2024;11:1474043. doi:10.3389/fmed.2024.1474043.
17.Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, Van Der Flier WM. Alzheimer’s disease. The Lancet. 2021;397(10284):1577–1590. doi:10.1016/S0140-6736(20)32205-4.
18.Söderberg L, Johannesson M, Nygren P, Laudon H, Eriksson F, Osswald G, Möller C, Lannfelt L. Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics. 2023;20(1):195–206. doi:10.1007/s13311-022-01308-6.
19.Stefaniak O, Dobrzyńska M, Drzymała-Czyż S, Przysławski J. Diet in the Prevention of Alzheimer’s Disease: Current Knowledge and Future Research Requirements. Nutrients. 2022;14(21):4564. doi:10.3390/nu14214564.
20.Su S, Huang R, Liu Y. The effects of transcranial direct current stimulation on global cognition in patients with Alzheimer’s disease: An update meta-analysis. Journal of Alzheimer’s Disease. 2025;103(1):19–37. doi:10.1177/13872877241298303.
21.Sudhakar V, Richardson RM. Gene Therapy for Neurodegenerative Diseases. Neurotherapeutics. 2019;16(1):166–175. doi:10.1007/s13311-018-00694-0.
22.Suzuki N, Hatta T, Ito M, Kusakabe K. Anti-amyloid-β Antibodies and Anti-tau Therapies for Alzheimer’s Disease: Recent Advances and Perspectives. Chemical and Pharmaceutical Bulletin. 2024;72(7):602–609. doi:10.1248/cpb.c24-00069.
23.Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, Lannfelt L, Bradley H, Rabe M, Koyama A, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimer’s Research & Therapy. 2021;13(1):80. doi:10.1186/s13195-021-00813-8.
24.Twarowski B, Herbet M. Inflammatory Processes in Alzheimer’s Disease - Pathomechanism, Diagnosis and Treatment: A Review. International Journal of Molecular Sciences. 2023;24(7):6518. doi:10.3390/ijms24076518.
25.Valverde-Guillén P, Medina MA, Mari-Beffa M, García-Díaz B, Bernal M. Strategies for the Modulation of Mitochondrial Metabolism and Activity in the Treatment of Neurodegenerative Diseases: A Systematic Review. Biology and Life Sciences. 2024. doi:10.20944/preprints202412.2412.v1.
26.Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H, Wang D. Forsythoside A Mitigates Alzheimer’s-like Pathology by Inhibiting Ferroptosis-mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. International Journal of Biological Sciences. 2022;18(5):2075–2090. doi:10.7150/ijbs.69714.
27.Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research. 2018;7:1161. doi:10.12688/f1000research.14506.1.
28.Xu X, Sun Y, Cen X, Shan B, Zhao Q, Xie T, Wang Z, Hou T, Xue Y, Zhang M, et al. Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein & Cell. 2021;12(10):769–787. doi:10.1007/s13238-021-00858-3.
29.Xue F, Du H. TREM2 Mediates Microglial Anti-Inflammatory Activations in Alzheimer’s Disease: Lessons Learned from Transcriptomics. Cells. 2021;10(2):321. doi:10.3390/cells10020321.
30.Yeganeh Markid T, Pourahmadiyan A, Hamzeh S, Sharifi‐Bonab M, Asadi MR, Jalaiei A, Rezazadeh M, Ghafouri‐Fard S. A special focus on polyadenylation and alternative polyadenylation in neurodegenerative diseases: A systematic review. Journal of Neurochemistry. 2025;169(2):e16255. doi:10.1111/jnc.16255.
31.Zheng J, Xu M, Walker V, Yuan J, Korologou-Linden R, Robinson J, Huang P, Burgess S, Au Yeung SL, Luo S, et al. Evaluating the efficacy and mechanism of metformin targets on reducing Alzheimer’s disease risk in the general population: A Mendelian randomisation study. Diabetologia. 2022;65(10):1664–1675. doi:10.1007/s00125-022-05743-0.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michał Piotrowski, Piotr Serwicki, Szczepan Pośpiech, Jakub Prosowski, Jakub Początek, Jessika Schendzielorz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 97
Number of citations: 0