Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Impact of Dietary Phytochemicals on Gut Microbiota and Intestinal Barrier Integrity – Nutritional Interventions and Their Role in Chronic Diseases Prevention
  • Home
  • /
  • Impact of Dietary Phytochemicals on Gut Microbiota and Intestinal Barrier Integrity – Nutritional Interventions and Their Role in Chronic Diseases Prevention
  1. Home /
  2. Archives /
  3. Vol. 39 (2025) /
  4. Medical Sciences

Impact of Dietary Phytochemicals on Gut Microbiota and Intestinal Barrier Integrity – Nutritional Interventions and Their Role in Chronic Diseases Prevention

Authors

  • Klaudia Michalak Provincial Specialist Hospital in Ciechanow, Powstancow Wielkopolskich Street 2, 06-400 Ciechanow https://orcid.org/0009-0004-7812-0827
  • Kacper Janowski Provincial Specialist Hospital in Ciechanow, Powstancow Wielkopolskich Street 2, 06-400 Ciechanow https://orcid.org/0009-0004-6354-7457
  • Emilia Piotrowicz Antoni Jurasz University Hospital, Maria Sklodowska-Curie Street 9, 85-094 Bydgoszcz https://orcid.org/0009-0001-7133-7001
  • Sandra Góras Regional Specjalist Hospital in Grudziadz, Doctor Ludwik Rydgier Street 15/17, 86-300 Grudziadz https://orcid.org/0009-0008-1589-2706

DOI:

https://doi.org/10.12775/QS.2025.39.59218

Keywords

gut microbiota, phytochemicals, chronic diseases, nutrition

Abstract

Introduction:  In recent decades, the development of chronic diseases has become a global problem burdening health care resources. The intestinal microbiota is a complex community of microbes involved in maintaining host homeostasis, and nutritional interventions affecting its functioning are the subject of many scientific studies. Phytochemicals are bioactive components of plants that have multiple actions in the metabolic pathways of human cells. There are many studies describing their diverse activities, including anti-inflammatory, anti-cancer, anti-allergic, and antioxidant. In this review, we described the effects of resveratrol, quercetin, curcumin, fisetin, berberine on the gut microbiota and intestinal barrier integrity through various metabolic pathways and the effects of their consumption on the development of chronic diseases.  

Materials and Methods: The analysis was conducted based on data available in studies found in the PubMed database. The research concerned the impact of phytochemicals on the gut microbiota and intestinal barrier integrity and their relationship with the development of chronic diseases.  

Conclusions: Studies indicate that diet has a direct impact on the state of the gut microbiota. A link between the consumption of products rich in phytochemicals and the reduction of the development of chronic diseases through the modulation of the gut microbiota has been described. Dietary interventions are an interesting and promising research subject, and development in this field should continue to be implemented in clinical practice.  

References

1. Greenberg H, Pi-Sunyer FX. Preventing preventable chronic disease: An essential goal. Prog Cardiovasc Dis. 2019 Jul-Aug;62(4):303-305. doi: 10.1016/j.pcad.2019.08.002. Epub 2019 Aug 14. PMID: 31421079.

2. Airhihenbuwa CO, Tseng TS, Sutton VD, Price L. Global Perspectives on Improving Chronic Disease Prevention and Management in Diverse Settings. Prev Chronic Dis. 2021 Apr 8;18:E33. doi: 10.5888/pcd18.210055. PMID: 33830913; PMCID: PMC8051856.

3. Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019 Jan;16(1):35-56. doi: 10.1038/s41575-018-0061-2. PMID: 30262901.

4. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017 Oct 2;5(4):e1373208. doi: 10.1080/21688370.2017.1373208. Epub 2017 Sep 28. PMID: 28956703; PMCID: PMC5788425.

5. Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Furman E, Haahtela T, Massart S, Plovier H, Sanz Y, Rook G. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ. 2018 Jun 15;627:1018-1038. doi: 10.1016/j.scitotenv.2018.01.288. Epub 2018 Feb 3. PMID: 29426121.

6. de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022 May;71(5):1020-1032. doi: 10.1136/gutjnl-2021-326789. Epub 2022 Feb 1. PMID: 35105664; PMCID: PMC8995832.

7. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019 Feb;76(3):473-493. doi: 10.1007/s00018-018-2943-4. Epub 2018 Oct 13. PMID: 30317530; PMCID: PMC11105460.

8. Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal Barrier in Human Health and Disease. Int J Environ Res Public Health. 2021 Dec 6;18(23):12836. doi: 10.3390/ijerph182312836. PMID: 34886561; PMCID: PMC8657205.

9. Li Q, von Ehrlich-Treuenstätt V, Schardey J, Wirth U, Zimmermann P, Andrassy J, Bazhin AV, Werner J, Kühn F. Gut Barrier Dysfunction and Bacterial Lipopolysaccharides in Colorectal Cancer. J Gastrointest Surg. 2023 Jul;27(7):1466-1472. doi: 10.1007/s11605-023-05654-4. Epub 2023 Mar 27. PMID: 36973501; PMCID: PMC10366024.

10. Baker JL, Mark Welch JL, Kauffman KM, McLean JS, He X. The oral microbiome: diversity, biogeography and human health. Nat Rev Microbiol. 2024 Feb;22(2):89-104. doi: 10.1038/s41579-023-00963-6. Epub 2023 Sep 12. PMID: 37700024; PMCID: PMC11084736.

11. Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol. 2024 Oct;32(10):970-983. doi: 10.1016/j.tim.2024.02.013. Epub 2024 Mar 19. PMID: 38503579.

12. Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere. 2021 May;271:129499. doi: 10.1016/j.chemosphere.2020.129499. Epub 2021 Jan 4. PMID: 33445014.

13. Park, K. The Role of Dietary Phytochemicals: Evidence from Epidemiological Studies. Nutrients 2023, 15, 1371. https://doi.org/ 10.3390/nu15061371

14. Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, Oz F. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules. 2023 Jan 16;28(2):887. doi: 10.3390/molecules28020887. PMID: 36677944; PMCID: PMC9862941.

15. Shen J, Shan J, Zhong L, Liang B, Zhang D, Li M, Tang H. Dietary Phytochemicals that Can Extend Longevity by Regulation of Metabolism. Plant Foods Hum Nutr. 2022 Mar;77(1):12-19. doi: 10.1007/s11130-021-00946-z. Epub 2022 Jan 13. PMID: 35025006; PMCID: PMC8756168.

16. Yin R, Kuo HC, Hudlikar R, Sargsyan D, Li S, Wang L, Wu R, Kong AN. Gut microbiota, dietary phytochemicals and benefits to human health. Curr Pharmacol Rep. 2019;5:332-344. doi: 10.1007/s40495-019-00196-3. Epub 2019 Aug 19. PMID: 33224717; PMCID: PMC7678755.

17. Karaman Mayack B, Sippl W, Ntie-Kang F. Natural Products as Modulators of Sirtuins. Molecules. 2020 Jul 20;25(14):3287. doi: 10.3390/molecules25143287. PMID: 32698385; PMCID: PMC7397027.

18. Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol. 2020 Aug 7;11:1225. doi: 10.3389/fphar.2020.01225. PMID: 32848804; PMCID: PMC7426493.

19. Akter R, Afrose A, Rahman MR, Chowdhury R, Nirzhor SSR, Khan RI, Kabir MT. A Comprehensive Analysis into the Therapeutic Application of Natural Products as SIRT6 Modulators in Alzheimer's Disease, Aging, Cancer, Inflammation, and Diabetes. Int J Mol Sci. 2021 Apr 17;22(8):4180. doi: 10.3390/ijms22084180. PMID: 33920726; PMCID: PMC8073883.

20. Tian B, Liu J. Resveratrol: a review of plant sources, synthesis, stability, modification and food application. J Sci Food Agric. 2020 Mar 15;100(4):1392-1404. doi: 10.1002/jsfa.10152. Epub 2019 Dec 14. PMID: 31756276.

21. Hou CY, Tain YL, Yu HR, Huang LT. The Effects of Resveratrol in the Treatment of Metabolic Syndrome. Int J Mol Sci. 2019 Jan 28;20(3):535. doi: 10.3390/ijms20030535. PMID: 30695995; PMCID: PMC6387422.

22. Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr. 2018 Jun 13;58(9):1428-1447. doi: 10.1080/10408398.2016.1263597. Epub 2017 Jul 21. PMID: 28001084.

23. Iatcu CO, Steen A, Covasa M. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients. 2021 Dec 30;14(1):166. doi: 10.3390/nu14010166. PMID: 35011044; PMCID: PMC8747253.

24. Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, Kim PS, Whon TW, Bae JW. Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice. Sci Rep. 2016 Jul 29;6:30887. doi: 10.1038/srep30887. PMID: 27471110; PMCID: PMC4965768.

25. Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D'Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci. 2022 Apr 5;23(7):4027. doi: 10.3390/ijms23074027. PMID: 35409389; PMCID: PMC8999966.

26. Chen M, Hou P, Zhou M, Ren Q, Wang X, Huang L, Hui S, Yi L, Mi M. Resveratrol attenuates high-fat diet-induced non-alcoholic steatohepatitis by maintaining gut barrier integrity and inhibiting gut inflammation through regulation of the endocannabinoid system. Clin Nutr. 2020 Apr;39(4):1264-1275. doi: 10.1016/j.clnu.2019.05.020. Epub 2019 May 30. PMID: 31189495.

27. Robertson I, Wai Hau T, Sami F, Sajid Ali M, Badgujar V, Murtuja S, Saquib Hasnain M, Khan A, Majeed S, Tahir Ansari M. The science of resveratrol, formulation, pharmacokinetic barriers and its chemotherapeutic potential. Int J Pharm. 2022 Apr 25;618:121605. doi: 10.1016/j.ijpharm.2022.121605. Epub 2022 Feb 26. PMID: 35227804.

28. Nabavi, Seyed & Nabavi, Seyed & Eslami, Shahram & Moghaddam, Akbar. (2012). In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chemistry. 132. 931–935. 10.1016/j.foodchem.2011.11.070.

29. Cui, Zhifu et al. “Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism.” Frontiers in immunology vol. 13 943321. 22 Jul. 2022, doi:10.3389/fimmu.2022.943321

30. Yuan M, Sun T, Zhang Y, Guo C, Wang F, Yao Z, Yu L. Quercetin Alleviates Insulin Resistance and Repairs Intestinal Barrier in db/db Mice by Modulating Gut Microbiota. Nutrients. 2024 Jun 14;16(12):1870. doi: 10.3390/nu16121870. PMID: 38931226; PMCID: PMC11206920.

31. Lin R, Piao M, Song Y. Dietary Quercetin Increases Colonic Microbial Diversity and Attenuates Colitis Severity in Citrobacter rodentium-Infected Mice. Front Microbiol. 2019 May 16;10:1092. doi: 10.3389/fmicb.2019.01092. PMID: 31156598; PMCID: PMC6531918.

32. Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol. 2023 Jun 8;14:1161067. doi: 10.3389/fimmu.2023.1161067. PMID: 37359549; PMCID: PMC10287165.

33. Dönder Y, Arikan TB, Baykan M, Akyüz M, Öz AB. Effects of quercitrin on bacterial translocation in a rat model of experimental colitis. Asian J Surg. 2018 Nov;41(6):543-550. doi: 10.1016/j.asjsur.2017.12.002. Epub 2018 Jan 20. PMID: 29371051.

34. [Dong Y, Hou Q, Lei J, Wolf PG, Ayansola H, Zhang B. Quercetin Alleviates Intestinal Oxidative Damage Induced by H2O2 via Modulation of GSH: In Vitro Screening and In Vivo Evaluation in a Colitis Model of Mice. ACS Omega. 2020 Apr 2;5(14):8334-8346. doi: 10.1021/acsomega.0c00804. PMID: 32309744; PMCID: PMC7161027.]

35. Suzuki T, Hara H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem. 2011 May;22(5):401-8. doi: 10.1016/j.jnutbio.2010.08.001. Epub 2010 Dec 16. PMID: 21167699.

36. Riemschneider S, Hoffmann M, Slanina U, Weber K, Hauschildt S, Lehmann J. Indol-3-Carbinol and Quercetin Ameliorate Chronic DSS-Induced Colitis in C57BL/6 Mice by AhR-Mediated Anti-Inflammatory Mechanisms. Int J Environ Res Public Health. 2021 Feb 25;18(5):2262. doi: 10.3390/ijerph18052262. PMID: 33668818; PMCID: PMC7956562.

37. Regmi S, Seo Y, Ahn JS, Pathak S, Acharya S, Nguyen TT, Yook S, Sung JH, Park JB, Kim JO, Young CS, Kim HS, Jeong JH. Heterospheroid formation improves therapeutic efficacy of mesenchymal stem cells in murine colitis through immunomodulation and epithelial regeneration. Biomaterials. 2021 Apr;271:120752. doi: 10.1016/j.biomaterials.2021.120752. Epub 2021 Mar 5. PMID: 33730631.

38. Damiano S, Sasso A, De Felice B, Di Gregorio I, La Rosa G, Lupoli GA, Belfiore A, Mondola P, Santillo M. Quercetin Increases MUC2 and MUC5AC Gene Expression and Secretion in Intestinal Goblet Cell-Like LS174T via PLC/PKCα/ERK1-2 Pathway. Front Physiol. 2018 Apr 6;9:357. doi: 10.3389/fphys.2018.00357. PMID: 29681865; PMCID: PMC5897515.

39. Ju S, Ge Y, Li P, Tian X, Wang H, Zheng X, Ju S. Dietary quercetin ameliorates experimental colitis in mouse by remodeling the function of colonic macrophages via a heme oxygenase-1-dependent pathway. Cell Cycle. 2018;17(1):53-63. doi: 10.1080/15384101.2017.1387701. Epub 2018 Jan 2. PMID: 28976231; PMCID: PMC5815442.

40. Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, Sahebkar A, Emami SA. Ethnobotany, Phytochemistry and Traditional Uses of Curcuma spp. and Pharmacological Profile of Two Important Species (C. longa and C. zedoaria): A Review. Curr Pharm Des. 2019;25(8):871-935. doi: 10.2174/1381612825666190402163940. PMID: 30947655

41. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G. Curcumin--from molecule to biological function. Angew Chem Int Ed Engl. 2012 May 29;51(22):5308-32. doi: 10.1002/anie.201107724. Epub 2012 May 4. PMID: 22566109.

42. Feng W, Wang H, Zhang P, Gao C, Tao J, Ge Z, Zhu D, Bi Y. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim Biophys Acta Gen Subj. 2017 Jul;1861(7):1801-1812. doi: 10.1016/j.bbagen.2017.03.017. Epub 2017 Mar 21. PMID: 28341485.

43. Sun ZZ, Li XY, Wang S, Shen L, Ji HF. Bidirectional interactions between curcumin and gut microbiota in transgenic mice with Alzheimer's disease. Appl Microbiol Biotechnol. 2020 Apr;104(8):3507-3515. doi: 10.1007/s00253-020-10461-x. Epub 2020 Feb 24. PMID: 32095862.

44. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium; Bork P, Wang J, Ehrlich SD, Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013 Aug 29;500(7464):541-6. doi: 10.1038/nature12506. PMID: 23985870.

45. McFadden RM, Larmonier CB, Shehab KW, Midura-Kiela M, Ramalingam R, Harrison CA, Besselsen DG, Chase JH, Caporaso JG, Jobin C, Ghishan FK, Kiela PR. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention. Inflamm Bowel Dis. 2015 Nov;21(11):2483-94. doi: 10.1097/MIB.0000000000000522. PMID: 26218141; PMCID: PMC4615313.

46. Shen L, Liu L, Ji HF. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017 Aug 9;61(1):1361780. doi: 10.1080/16546628.2017.1361780. PMID: 28814952; PMCID: PMC5553098.

47. Faralli A, Shekarforoush E, Ajalloueian F, Mendes AC, Chronakis IS. In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydr Polym. 2019 Feb 15;206:38-47. doi: 10.1016/j.carbpol.2018.10.073. Epub 2018 Oct 29. PMID: 30553335.

48. Wang J, Ghosh SS, Ghosh S. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions. Am J Physiol Cell Physiol. 2017 Apr 1;312(4):C438-C445. doi: 10.1152/ajpcell.00235.2016. Epub 2017 Mar 1. PMID: 28249988; PMCID: PMC5407015.

49. Hou HT, Qiu YM, Zhao HW, Li DH, Liu YT, Wang YZ, Su SH. [Effect of curcumin on intestinal mucosal mechanical barrier in rats with non-alcoholic fatty liver disease]. Zhonghua Gan Zang Bing Za Zhi. 2017 Feb 20;25(2):134-138. Chinese. doi: 10.3760/cma.j.issn.1007-3418.2017.02.011. PMID: 28297801.

50. Ghosh SS, Bie J, Wang J, Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS One. 2014 Sep 24;9(9):e108577. doi: 10.1371/journal.pone.0108577. PMID: 25251395; PMCID: PMC4177397.

51. Tuin A, Poelstra K, de Jager-Krikken A, Bok L, Raaben W, Velders MP, Dijkstra G. Role of alkaline phosphatase in colitis in man and rats. Gut. 2009 Mar;58(3):379-87. doi: 10.1136/gut.2007.128868. Epub 2008 Oct 13. PMID: 18852260.

52. Kiffer-Moreira T, Sheen CR, Gasque KC, Bolean M, Ciancaglini P, van Elsas A, Hoylaerts MF, Millán JL. Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS One. 2014 Feb 24;9(2):e89374. doi: 10.1371/journal.pone.0089374. PMID: 24586729; PMCID: PMC3933536.

53. Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Hu J. Effect of Curcumin on the Diversity of Gut Microbiota in Ovariectomized Rats. Nutrients. 2017 Oct 19;9(10):1146. doi: 10.3390/nu9101146. PMID: 29048369; PMCID: PMC5691762.

54. Kashyap D, Sharma A, Sak K, Tuli HS, Buttar HS, Bishayee A. Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy. Life Sci. 2018 Feb 1;194:75-87. doi: 10.1016/j.lfs.2017.12.005. Epub 2017 Dec 7. PMID: 29225112.

55. Chen TJ, Feng Y, Liu T, Wu TT, Chen YJ, Li X, Li Q, Wu YC. Fisetin Regulates Gut Microbiota and Exerts Neuroprotective Effect on Mouse Model of Parkinson's Disease. Front Neurosci. 2020 Dec 14;14:549037. doi: 10.3389/fnins.2020.549037. PMID: 33381005; PMCID: PMC7768012.

56. Lin A, Zheng W, He Y, Tang W, Wei X, He R, Huang W, Su Y, Huang Y, Zhou H, Xie H. Gut microbiota in patients with Parkinson's disease in southern China. Parkinsonism Relat Disord. 2018 Aug;53:82-88. doi: 10.1016/j.parkreldis.2018.05.007. PMID: 29776865.

57. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, Knight R, Payami H. Parkinson's disease and Parkinson's diseafse medications have distinct signatures of the gut microbiome. Mov Disord. 2017 May;32(5):739-749. doi: 10.1002/mds.26942. Epub 2017 Feb 14. PMID: 28195358; PMCID: PMC5469442.

58. Srivastav S, Neupane S, Bhurtel S, Katila N, Maharjan S, Choi H, Hong JT, Choi DY. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem. 2019 Jul;69:73-86. doi: 10.1016/j.jnutbio.2019.03.021. Epub 2019 Apr 6. PMID: 31063918

59. Ren Q, Cheng L, Guo F, Tao S, Zhang C, Ma L, Fu P. Fisetin Improves Hyperuricemia-Induced Chronic Kidney Disease via Regulating Gut Microbiota-Mediated Tryptophan Metabolism and Aryl Hydrocarbon Receptor Activation. J Agric Food Chem. 2021 Sep 22;69(37):10932-10942. doi: 10.1021/acs.jafc.1c03449. Epub 2021 Sep 10. PMID: 34505780.

60. Liu JR, Miao H, Deng DQ, Vaziri ND, Li P, Zhao YY. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation. Cell Mol Life Sci. 2021 Feb;78(3):909-922. doi: 10.1007/s00018-020-03645-1. Epub 2020 Sep 23. PMID: 32965514; PMCID: PMC11073292.

61. Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, Dong B. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol. 2022 Apr 7;13:796288. doi: 10.3389/fimmu.2022.796288. PMID: 35464431; PMCID: PMC9021448

62. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review. Mol Neurobiol. 2019 Mar;56(3):1841-1851. doi: 10.1007/s12035-018-1188-4. Epub 2018 Jun 23. PMID: 29936690; PMCID: PMC6394610

63. Sip S, Rosiak N, Sip A, Żarowski M, Hojan K, Cielecka-Piontek J. A Fisetin Delivery System for Neuroprotection: A Co-Amorphous Dispersion Prepared in Supercritical Carbon Dioxide. Antioxidants (Basel). 2023 Dec 21;13(1):24. doi: 10.3390/antiox13010024. PMID: 38275644; PMCID: PMC10812833

64. Ashiqueali SA, Chaudhari D, Zhu X, Noureddine S, Siddiqi S, Garcia DN, Gostynska A, Stawny M, Rubis B, Zanini BM, Mansoor MAM, Schneider A, Naser SA, Yadav H, Masternak MM. Fisetin modulates the gut microbiota alongside biomarkers of senescence and inflammation in a DSS-induced murine model of colitis. Geroscience. 2024 Jun;46(3):3085-3103. doi: 10.1007/s11357-024-01060-z. Epub 2024 Jan 8. PMID: 38191834; PMCID: PMC11009197.

65. Stojanov S, Berlec A, Štrukelj B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms. 2020 Nov 1;8(11):1715. doi: 10.3390/microorganisms8111715. PMID: 33139627; PMCID: PMC7692443.

66. Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms. 2018 Jul 23;6(3):75. doi: 10.3390/microorganisms6030075. PMID: 30041463; PMCID: PMC6163243.

67. Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The Effects of Berberis vulgaris Fruit Extract on Serum Lipoproteins, apoB, apoA-I, Homocysteine, Glycemic Control and Total Antioxidant Capacity in Type 2 Diabetic Patients. Iran J Pharm Res. 2012 Spring;11(2):643-52. PMID: 24250489; PMCID: PMC3832145.

68. Imenshahidi M, Hosseinzadeh H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother Res. 2019 Mar;33(3):504-523. doi: 10.1002/ptr.6252. Epub 2019 Jan 13. PMID: 30637820.

69. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, Zhang Z, Zhang Y, Li X, Ning G, Zhao L. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One. 2012;7(8):e42529. doi: 10.1371/journal.pone.0042529. Epub 2012 Aug 3. PMID: 22880019; PMCID: PMC3411811.

70. Guo Y, Zhang Y, Huang W, Selwyn FP, Klaassen CD. Dose-response effect of berberine on bile acid profile and gut microbiota in mice. BMC Complement Altern Med. 2016 Oct 18;16(1):394. doi: 10.1186/s12906-016-1367-7. PMID: 27756364; PMCID: PMC5070223.

71. Wang Y, Shou JW, Li XY, Zhao ZX, Fu J, He CY, Feng R, Ma C, Wen BY, Guo F, Yang XY, Han YX, Wang LL, Tong Q, You XF, Lin Y, Kong WJ, Si SY, Jiang JD. Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism. Metabolism. 2017 May;70:72-84. doi: 10.1016/j.metabol.2017.02.003. Epub 2017 Feb 10. PMID: 28403947.

72. Vidrine K, Ye J, Martin RJ, McCutcheon KL, Raggio AM, Pelkman C, Durham HA, Zhou J, Senevirathne RN, Williams C, Greenway F, Finley J, Gao Z, Goldsmith F, Keenan MJ. Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity (Silver Spring). 2014 Feb;22(2):344-8. doi: 10.1002/oby.20501. Epub 2013 Oct 15. PMID: 23630079.

73. Wu Y, He H, Cheng Z, Bai Y, Ma X. The Role of Neuropeptide Y and Peptide YY in the Development of Obesity via Gut-brain Axis. Curr Protein Pept Sci. 2019;20(7):750-758. doi: 10.2174/1389203720666190125105401. PMID: 30678628.

74. Chen Y, Hao Z, Zhao H, Duan X, Jia D, Li K, Yang Y, Cui H, Gao M, Zhao D. Berberine alleviates intestinal barrier dysfunction in glucolipid metabolism disorder hamsters by modulating gut microbiota and gut-microbiota-related tryptophan metabolites. J Sci Food Agric. 2023 Feb;103(3):1464-1473. doi: 10.1002/jsfa.12242. Epub 2022 Oct 10. PMID: 36168925.

75. Tang M, Yuan D, Liao P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets. Environ Pollut. 2021 Nov 15;289:117865. doi: 10.1016/j.envpol.2021.117865. Epub 2021 Jul 31. PMID: 34358871.

76. Wei B, Xiao H, Xu B, Kuca K, Qin Z, Guo X, Wu W, Wu Q. Emesis to trichothecene deoxynivalenol and its congeners correspond to secretion of peptide YY and 5-HT. Food Chem Toxicol. 2023 Aug;178:113874. doi: 10.1016/j.fct.2023.113874. Epub 2023 Jun 5. PMID: 37286030.

77. Lange K, Buerger M, Stallmach A, Bruns T. Effects of Antibiotics on Gut Microbiota. Dig Dis. 2016;34(3):260-8. doi: 10.1159/000443360. Epub 2016 Mar 30. PMID: 27028893.

78. Molina-Torres G, Rodriguez-Arrastia M, Roman P, Sanchez-Labraca N, Cardona D. Stress and the gut microbiota-brain axis. Behav Pharmacol. 2019 Apr;30(2 and 3-Spec Issue):187-200. doi: 10.1097/FBP.0000000000000478. PMID: 30844962.

79. Campaniello D, Corbo MR, Sinigaglia M, Speranza B, Racioppo A, Altieri C, Bevilacqua A. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients. 2022 Jun 14;14(12):2456. doi: 10.3390/nu14122456. PMID: 35745186; PMCID: PMC9227967.

80. Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, Cammarota G. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016 Nov;20(22):4742-4749. PMID: 27906427.

81. Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N, Hanhineva K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes. 2022 Jan-Dec;14(1):2102878. doi: 10.1080/19490976.2022.2102878. PMID: 35903003; PMCID: PMC9341364.

82. Rigi S, Mousavi SM, Shakeri F, Keshteli AH, Benisi-Kohansal S, Saadatnia M, Esmaillzadeh A. Dietary phytochemical index in relation to risk of stroke: a case-control study. Nutr Neurosci. 2022 Nov;25(11):2239-2246. doi: 10.1080/1028415X.2021.1954291. Epub 2021 Jul 26. PMID: 34311680.

83. Eslami O, Khoshgoo M, Shidfar F. Dietary phytochemical index and overweight/obesity in children: a cross-sectional study. BMC Res Notes. 2020 Mar 5;13(1):132. doi: 10.1186/s13104-020-04979-6. PMID: 32138761; PMCID: PMC7059655.

84. Ahmadi B, Ramezani Ahmadi A, Jafari M, Morshedzadeh N. The association of dietary phytochemical index and nonalcoholic fatty liver disease. Food Sci Nutr. 2023 May 3;11(7):4010-4019. doi: 10.1002/fsn3.3389. PMID: 37457157; PMCID: PMC10345673.

85. Acikgoz Pinar A, Yildiz E, Altundag K. Dietary Phytochemical Index and the Risk of Breast Cancer: A Case-Control Study. Nutr Cancer. 2023;75(2):482-487. doi: 10.1080/01635581.2022.2122518. Epub 2022 Sep 14. PMID: 36104945.

Downloads

  • PDF

Published

2025-03-24

How to Cite

1.
MICHALAK, Klaudia, JANOWSKI, Kacper, PIOTROWICZ, Emilia and GÓRAS, Sandra. Impact of Dietary Phytochemicals on Gut Microbiota and Intestinal Barrier Integrity – Nutritional Interventions and Their Role in Chronic Diseases Prevention. Quality in Sport. Online. 24 March 2025. Vol. 39, p. 59218. [Accessed 28 June 2025]. DOI 10.12775/QS.2025.39.59218.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 39 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Klaudia Michalak, Kacper Janowski, Emilia Piotrowicz, Sandra Góras

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 143
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

gut microbiota, phytochemicals, chronic diseases, nutrition
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop