The Impact of Protein Intake on Insulin-Like Growth Factor-1 (IGF-1) Levels and Its Implications for Metabolic Health and Aging Processes– a literature review
DOI:
https://doi.org/10.12775/QS.2025.40.59178Keywords
Acne, protein supplementation, whey protein, insulin-like growth factor 1, IGF-1, plant-based products, aging processesAbstract
Introduction
Insulin-Like Growth Factor-1 (IGF-1) is a key hormone involved in cellular growth, metabolism, and aging. Its levels are influenced by various factors, including dietary protein intake. While IGF-1 plays a crucial role in muscle maintenance, tissue repair, and overall metabolic function, elevated levels have been associated with an increased risk of certain diseases, including cancer and metabolic disorders. Conversely, lower IGF-1 levels have been linked to longevity and reduced aging-related diseases. In particular, concerns have been raised about whey protein’s potential impact on acne flare-ups.[1]
Aim of the study
The primary aim of this study is to examine the relationship between dietary protein intake and Insulin-Like Growth Factor-1 (IGF-1) levels, assessing its potential implications for metabolic health and aging. This includes examining physiological mechanisms, identifying types of protein linked to acne flare-ups, and analyzing clinical studies to better understand their impact on skin health.
Materials and Methods
This review is based on a literature search conducted on PubMed. The following keywords were used: acne, protein supplementation, whey protein, and Insulin-like Growth Factor 1 (IGF-1), plant-based products.
Conclusions
Protein supplements, particularly those containing whey protein, may contribute to acne development through hormonal mechanisms such as increased IGF-1 levels and androgen production. While not everyone will experience acne from protein supplementation, individuals with a sensitivity to dairy or those who consume excessive amounts of protein may be more likely to notice acne flare-ups. Insulin-Like Growth Factor-1 (IGF-1) plays a critical role in growth, metabolism, and aging, with its levels being significantly influenced by dietary protein intake.
References
1. Zaenglein AL, Pathy AL, Schlosser BJ, Alikhan A, Baldwin HE, Berson DS, Bowe WP, Graber EM, Harper JC, Kang S, Keri JE, Leyden JJ, Reynolds RV, Silverberg NB, Stein Gold LF, Tollefson MM, Weiss JS, Dolan NC, Sagan AA, Stern M, Boyer KM, Bhushan R. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016 May;74(5):945-73.e33. doi: 10.1016/j.jaad.2015.12.037. Epub 2016 Feb 17. Erratum in: J Am Acad Dermatol. 2020 Jun;82(6):1576. doi: 10.1016/j.jaad.2020.02.010. PMID: 26897386.
2. Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012 Jan 28;379(9813):361-72. doi: 10.1016/S0140-6736(11)60321-8. Epub 2011 Aug 29. Erratum in: Lancet. 2012 Jan 28;379(9813):314. PMID: 21880356.
3. Makrantonaki E, Ganceviciene R, Zouboulis C. An update on the role of the sebaceous gland in the pathogenesis of acne. Dermatoendocrinol. 2011 Jan;3(1):41-9. doi: 10.4161/derm.3.1.13900. PMID: 21519409; PMCID: PMC3051853.
4. Thiboutot, D. M. (2000). The role of follicular hyperkeratinization in acne. Journal of Dermatological Treatment, 11(SUPPL. 2), 5-8. https://doi.org/10.1080/095466300750163645
5. Ganceviciene R, Fimmel S, Glass E, Zouboulis CC. Psoriasin and follicular hyperkeratinization in acne comedones. Dermatology. 2006;213(3):270-2. doi: 10.1159/000095058. PMID: 17033192.
6. Beylot C, Auffret N, Poli F, Claudel JP, Leccia MT, Del Giudice P, Dreno B. Propionibacterium acnes: an update on its role in the pathogenesis of acne. J Eur Acad Dermatol Venereol. 2014 Mar;28(3):271-8. doi: 10.1111/jdv.12224. Epub 2013 Aug 1. PMID: 23905540.
7. O'Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018 Oct 2;6(1):177. doi: 10.1186/s40168-018-0558-5. PMID: 30285861; PMCID: PMC6169095.
8. Tanghetti EA. The role of inflammation in the pathology of acne. J Clin Aesthet Dermatol. 2013 Sep;6(9):27-35. PMID: 24062871; PMCID: PMC3780801.
9. Rao, A., Douglas, S.C., & Hall, J.M. (2021). Endocrine Disrupting Chemicals, Hormone Receptors, and Acne Vulgaris: A Connecting Hypothesis. Cells, 10.
10. Chen W, Thiboutot D, Zouboulis CC. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol. 2002;119(5):992-1007. doi:10.1046/j.1523-1747.2002.00613.x
11. Smith RN, Mann NJ, Braue A, Mäkeläinen H, Varigos GA. A low-glycemic-load diet improves symptoms in acne vulgaris patients: a randomized controlled trial. Am J Clin Nutr. 2007;86(1):107-115. doi:10.1093/ajcn/86.1.107.
12. Heng, A.H.S., Say, YH., Sio, Y.Y. et al. Gene variants associated with acne vulgaris presentation and severity: a systematic review and meta-analysis. BMC Med Genomics 14, 103 (2021). https://doi.org/10.1186/s12920-021-00953-8
13. Bocheva, G., Slominski, R. M., & Slominski, A. T. (2023). Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. International Journal of Molecular Sciences, 24(13), 10502. https://doi.org/10.3390/ijms241310502
14. Araviiskaia E, Berardesca E, Bieber T, et al. The impact of airborne pollution on skin. J Eur Acad Dermatol Venereol. 2019;33(8):1496-1505. doi:10.1111/jdv.15583
15. Harper, J. C., & Thiboutot, D. M. (2003). Pathogenesis of acne: recent research advances. Advances in dermatology, 19, 1–10.
16. Vasam, M., Korutla, S., & Bohara, R. A. (2023). Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances. Biochemistry and biophysics reports, 36, 101578. https://doi.org/10.1016/j.bbrep.2023.101578
17. Melnik B. (2012). Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet. Dermato-endocrinology, 4(1), 20–32. https://doi.org/10.4161/derm.19828
18. Muhaidat, J., Qablan, A., Gharaibeh, F., Albataineh, G. H., Abdo, N., Alshiyab, D., & Al-Qarqaz, F. (2024). The Effect of Whey Protein Supplements on Acne Vulgaris among Male Adolescents and Young Adults: A Case-Control Study from North of Jordan. Dermatology research and practice, 2024, 2158229. https://doi.org/10.1155/2024/2158229
19. Tsutsumi R, Tsutsumi YM. Peptides and proteins in whey and their benefits for human health. Austin J Nutri Food Sci 2014;1(1): 1002. ISSN: 2381-8980.
20. Cooke, M. B., La Bounty, P., Buford, T., Shelmadine, B., Redd, L., Hudson, G., & Willoughby, D. S. (2011). Ingestion of 10 grams of whey protein prior to a single bout of resistance exercise does not augment Akt/mTOR pathway signaling compared to carbohydrate. Journal of the International Society of Sports Nutrition, 8(1). https://doi.org/10.1186/1550-2783-8-18
21. Cooke, M.B., La Bounty, P., Buford, T. et al. Ingestion of 10 grams of whey protein prior to a single bout of resistance exercise does not augment Akt/mTOR pathway signaling compared to carbohydrate. J Int Soc Sports Nutr 8, 18 (2011). https://doi.org/10.1186/1550-2783-8-18
22. Xu, Z., Tan, Z., Zhang, Q., Gui, Q., & Yang, Y. (2015). The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. British Journal of Nutrition, 113(1), 25–34. doi:10.1017/S0007114514002475
23. Cava, E., Padua, E., Campaci, D., Bernardi, M., Muthanna, F. M. S., Caprio, M., & Lombardo, M. (2024). Investigating the Health Implications of Whey Protein Consumption: A Narrative Review of Risks, Adverse Effects, and Associated Health Issues. Healthcare, 12(2), 246. https://doi.org/10.3390/healthcare12020246
24. Stewart TJ, Bazergy C. Hormonal and dietary factors in acne vulgaris versus controls. Dermatoendocrinol. 2018;10(1):e1442160. Published 2018 Feb 22. doi:10.1080/19381980.2018.1442160
25. Adebamowo, C. A., Spiegelman, D., Berkey, C. S., Danby, F. W., Rockett, H. H., Colditz, G. A., Willett, W. C., & Holmes, M. D. (2008). Milk consumption and acne in teenaged boys. Journal of the American Academy of Dermatology, 58(5), 787–793. https://doi.org/10.1016/j.jaad.2007.08.049
26. Muhaidat, J., Qablan, A., Gharaibeh, F., Albataineh, G. H., Abdo, N., Alshiyab, D., & Al-Qarqaz, F. (2024). The Effect of Whey Protein Supplements on Acne Vulgaris among Male Adolescents and Young Adults: A Case-Control Study from North of Jordan. Dermatology research and practice, 2024, 2158229. https://doi.org/10.1155/2024/2158229
27. Simonart T. (2012). Acne and whey protein supplementation among bodybuilders. Dermatology (Basel, Switzerland), 225(3), 256–258. https://doi.org/10.1159/000345102
28. Burris, J., Rietkerk, W., & Woolf, K. (2013). Acne: the role of medical nutrition therapy. Journal of the Academy of Nutrition and Dietetics, 113(3), 416–430. https://doi.org/10.1016/j.jand.2012.11.016
29. Melnik, B. C., & Schmitz, G. (2009). Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Experimental dermatology, 18(10), 833–841. https://doi.org/10.1111/j.1600-0625.2009.00924.x
30. Tay W, Quek R, Lim J, Kaur B, Ponnalagu S, Henry CJ. Plant-based alternative proteins-are they nutritionally more advantageous?. Eur J Clin Nutr. 2023;77(11):1051-1060. doi:10.1038/s41430-023-01328-1
31. Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine. 2019;43:632-640. doi:10.1016/j.ebiom.2019.04.005.
32. Del Rosso JQ, Brandt S. The Role of Skin Care as an Integral Component in the Management of Acne Vulgaris: Part 2: Tolerability and Performance of a Designated Skin Care Regimen Using a Foam Wash and Moisturizer SPF 30 in Patients with Acne Vulgaris Undergoing Active Treatment. J Clin Aesthet Dermatol. 2013;6(12):28-36.
33. Tran D, Bergholz J, Zhang H, et al. Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. Aging Cell. 2014;13(4):669-678. doi:10.1111/acel.12219
34. Vitale G, Pellegrino G, Vollery M, Hofland LJ. ROLE of IGF-1 System in the Modulation of Longevity: Controversies and New Insights From a Centenarians' Perspective. Front Endocrinol (Lausanne). 2019;10:27. Published 2019 Feb 1. doi:10.3389/fendo.2019.00027
35. Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci. 2012;67(6):599-610. doi:10.1093/gerona/gls072
36. Bassil F, Fernagut PO, Bezard E, Meissner WG. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification. Prog Neurobiol. 2014;118:1-18. doi:10.1016/j.pneurobio.2014.02.005
37. Friedrich N, Thuesen B, Jørgensen T, et al. The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care. 2012;35(4):768-773. doi:10.2337/dc11-1833
38. Holzenberger M, Kappeler L, De Magalhaes Filho C. IGF-1 signaling and aging. Exp Gerontol. 2004;39(11-12):1761-1764. doi:10.1016/j.exger.2004.08.017
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Marlena Jankowska, Karolina Baran , Natalia Jańczyk , Karolina Mędrysa , Jakub Jan Pokrzepa , Michał Presak , Gabriela Blecharz , Julia Szwech , Mikołaj Pograniczny , Adrianna Mielżyńska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 1336
Number of citations: 0