Gene therapy: A Revolution in Medicine or a Risky Game with our DNA?
DOI:
https://doi.org/10.12775/QS.2025.39.58956Keywords
gene therapy, SMA, DMD, Parkinson's disease, Huntington's diseaseAbstract
Introduction: The aim of this review is to provide an overview of the applications of gene therapies in various diseases and to highlight areas where further research is needed.
Materials and methods: A review of chosen literature in the PubMed database was conducted, using the following keywords: ,,gene therapy”, “SMA”, “DMD”, “Parkinson’s Disease”, “Huntington’s disease”
Summary: Gene therapy can be useful in a variety of medical conditions, including Parkinson’s disease, pulmonary hypertension, Wiskott-Aldrich syndrome, spinal muscular atrophy (SMA), Huntington’s disease, Duchenne muscular dystrophy (DMD), and chronic pain management. Different gene therapy approaches, such as viral vector delivery, CRISPR-Cas9 gene editing, exon-skipping therapy, and antisense oligonucleotides (ASOs), have demonstrated potential in treating these diseases.
Conclusions: Gene therapy represents a groundbreaking advancement in medicine, offering hope for diseases that were once considered untreatable. Clinical trials have demonstrated encouraging outcomes in treating neurodegenerative and genetic disorders. Future developments in gene editing tools, improved vector systems, and targeted delivery methods will be crucial in enhancing the efficacy of gene therapy.
References
[1] Nathwani AC, Davidoff AM, Tuddenham EGD. Gene Therapy for Hemophilia. Hematol Oncol Clin North Am. 2017;31(5):853-868. doi:10.1016/j.hoc.2017.06.011
[2] Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci. 2023;24(9):7736. Published 2023 Apr 23. doi:10.3390/ijms24097736
[3] Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med. 2013;5(11):1642-1661. doi:10.1002/emmm.201202287
[4] Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017;15(3):369-375. doi:10.1590/S1679-45082017RB4024
[5] Collins M, Thrasher A. Gene therapy: progress and predictions. Proc Biol Sci. 2015;282(1821):20143003. doi:10.1098/rspb.2014.3003
[6] Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743-800. doi:10.1016/S0140-6736(15)60692-4
[7] Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov Disord. 2008;23 Suppl 3:S548-S559. doi:10.1002/mds.22062
[8] Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. Published 2017 Mar 23. doi:10.1038/nrdp.2017.13
[9] Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends Neurosci. 2019;42(2):140-149. doi:10.1016/j.tins.2018.11.001
[10] Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med. 2009;361(17):1651-1661. doi:10.1056/NEJMoa0901281
[11] Anheim M, Elbaz A, Lesage S, et al. Penetrance of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology. 2012;78(6):417-420. doi:10.1212/WNL.0b013e318245f476
[12] Jackson KL, Viel C, Clarke J, et al. Viral delivery of a microRNA to Gba to the mouse central nervous system models neuronopathic Gaucher disease. Neurobiol Dis. 2019;130:104513. doi:10.1016/j.nbd.2019.104513
[13] Rocha EM, Smith GA, Park E, et al. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons. Neurobiol Dis. 2015;82:495-503. doi:10.1016/j.nbd.2015.09.009
[14] Challis C, Hori A, Sampson TR, et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci. 2020;23(3):327-336. doi:10.1038/s41593-020-0589-7
[15] Salegio EA, Samaranch L, Kells AP, et al. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther. 2013;20(3):348-352. doi:10.1038/gt.2012.27
[16] Abeliovich A, Hefti F, Sevigny J. Gene Therapy for Parkinson's Disease Associated with GBA1 Mutations. J Parkinsons Dis. 2021;11(s2):S183-S188. doi:10.3233/JPD-212739
[17] Ledford H. CRISPR, the disruptor. Nature. 2015;522(7554):20-24. doi:10.1038/522020a
[18] Singh V, Braddick D, Dhar PK. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene. 2017;599:1-18. doi:10.1016/j.gene.2016.11.008
[19] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997;276(5321):2045-2047. doi:10.1126/science.276.5321.2045
[20] Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature. 2016;535(7613):476-477. doi:10.1038/nature.2016.20302
[21] Weiss DJ. Delivery of gene transfer vectors to lung: obstacles and the role of adjunct techniques for airway administration. Mol Ther. 2002;6(2):148-152. doi:10.1006/mthe.2002.0662
[22] Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci. 2021;22(3):1179. Published 2021 Jan 25. doi:10.3390/ijms22031179
[23] Ferrua F, Marangoni F, Aiuti A, Roncarolo MG. Gene therapy for Wiskott-Aldrich syndrome: History, new vectors, future directions. J Allergy Clin Immunol. 2020;146(2):262-265. doi:10.1016/j.jaci.2020.06.018
[24] Verhaart IEC, Robertson A, Wilson IJ, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - a literature review. Orphanet J Rare Dis. 2017;12(1):124. Published 2017 Jul 4. doi:10.1186/s13023-017-0671-8
[25] Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155-165. doi:10.1016/0092-8674(95)90460-3
[26] Schorling DC, Pechmann A, Kirschner J. Advances in Treatment of Spinal Muscular Atrophy - New Phenotypes, New Challenges, New Implications for Care. J Neuromuscul Dis. 2020;7(1):1-13. doi:10.3233/JND-190424
[27] Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci. 2018;75(21):3877-3894. doi:10.1007/s00018-018-2849-1
[28] Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve. 2015;51(2):157-167. doi:10.1002/mus.24497
[29] Mendell JR, Al-Zaidy S, Shell R, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377(18):1713-1722. doi:10.1056/NEJMoa1706198
[30] Al-Zaidy SA, Kolb SJ, Lowes L, et al. AVXS-101 (Onasemnogene Abeparvovec) for SMA1: Comparative Study with a Prospective Natural History Cohort. J Neuromuscul Dis. 2019;6(3):307-317. doi:10.3233/JND-190403
[31] Mendell JR, Al-Zaidy SA, Lehman KJ, et al. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurol. 2021;78(7):834-841. doi:10.1001/jamaneurol.2021.1272
[32] Strauss KA, Farrar MA, Muntoni F, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the Phase III SPR1NT trial. Nat Med. 2022;28(7):1381-1389. doi:10.1038/s41591-022-01866-4
[33] Day JW, Finkel RS, Chiriboga CA, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(4):284-293. doi:10.1016/S1474-4422(21)00001-6
[34] Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021;20(10):832-841. doi:10.1016/S1474-4422(21)00251-9
[35] Li YZ, Ji RR. Gene therapy for chronic pain management. Cell Rep Med. 2024;5(10):101756. doi:10.1016/j.xcrm.2024.101756
[36] Bräuer S, Falkenburger B. Gentherapie der Huntington-Krankheit [Gene Therapy for Huntington Disease]. Fortschr Neurol Psychiatr. 2023;91(4):141-146. doi:10.1055/a-2042-2338
[37] Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management [published correction appears in Lancet Neurol. 2018 Jun;17(6):495. doi: 10.1016/S1474-4422(18)30125-X.]. Lancet Neurol. 2018;17(3):251-267. doi:10.1016/S1474-4422(18)30024-3
[38] Giliberto F, Radic CP, Luce L, Ferreiro V, de Brasi C, Szijan I. Symptomatic female carriers of Duchenne muscular dystrophy (DMD): genetic and clinical characterization. J Neurol Sci. 2014;336(1-2):36-41. doi:10.1016/j.jns.2013.09.036
[39] van Deutekom JC, van Ommen GJ. Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet. 2003;4(10):774-783. doi:10.1038/nrg1180
[40] Verhaart IEC, Aartsma-Rus A. Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol. 2019;15(7):373-386. doi:10.1038/s41582-019-0203-3
[41] Bushby K, Finkel R, Wong B, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50(4):477-487. doi:10.1002/mus.24332
[42] McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10101):1489-1498. doi:10.1016/S0140-6736(17)31611-2
[43] Michorowska S. Ataluren-Promising Therapeutic Premature Termination Codon Readthrough Frontrunner. Pharmaceuticals (Basel). 2021;14(8):785. Published 2021 Aug 9. doi:10.3390/ph14080785
[44] Ruggiero L, Iodice R, Esposito M, et al. One-year follow up of three Italian patients with Duchenne muscular dystrophy treated with ataluren: is earlier better?. Ther Adv Neurol Disord. 2018;11:1756286418809588. Published 2018 Nov 3. doi:10.1177/1756286418809588
[45] D'Ambrosio P, Orsini C, Nigro V, Politano L. Therapeutic approach with Ataluren in Duchenne symptomatic carriers with nonsense mutations in dystrophin gene. Results of a 9-month follow-up in a case report. Acta Myol. 2018;37(4):272-274. Published 2018 Dec 1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Julia Kozakiewicz, Aleksandra Okońska, Kamil Kościelecki, Agnieszka Kalisz, Iwona Skorulska, Klaudia Mączewska, Patrycja Długozima, Paulina Grzeszczuk, Weronika Grywińska, Aleksandra Głowacka

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 198
Number of citations: 0