COVID-19 Sequelae: Long-Term Impairments in Physical Performance
DOI:
https://doi.org/10.12775/QS.2025.39.58900Keywords
COVID-19, myocarditis, Athletes, long COVID-19, physical performance, Fatigue, exercise toleranceAbstract
Introduction: Five years ago, the world faced the COVID-19 pandemic. The rapidly spreading disease necessitated extensive research by scientists and physicians on symptom progression, therapeutic options, and, most importantly, complications associated with the infection. Some of the most common post-COVID-19 complications affect the ability to return to physical activity and subsequent physical performance. Although the acute phase of infection tends to present with mild symptoms in physically active individuals, the resulting complications can be far more disruptive, significantly impairing the recovery process and the ability to resume training.
Aim of the study: The aim of this study is to review the available literature to analyze potential COVID-19 complications and their impact on physical performance and return to play (RTP).
Materials and methods: A comprehensive review of the literature available across reputable databases including PubMed, Scopus, Google Scholar, Embase and Cochrane Library. The study was conducted using a systematic search of keywords, including "COVID-19", “post- COVID”, “return to play”, "myocarditis", "athletes," "long COVID-19", "physical performance", “Fatigue” and “exercise tolerance”.
Results and conclusion: Physically active individuals tend to experience a milder acute phase of infection; however, they are also affected by complications resulting from the disease. Cardiovascular and respiratory complications, along with chronic long-COVID syndrome, reduce physical performance and delay the return to peak fitness. It is crucial to reintroduce training gradually and conduct thorough monitoring of the patient's condition, despite the desire for a rapid return to exercise.
References
[1] Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID‐19 hospitalization: a community‐based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184‐187.
[2] Williams Z, Hull JH. Respiratory complications following COVID-19 in athletic populations: A narrative review. Scand J Med Sci Sports. 2024 Jan;34(1):e14275. doi: 10.1111/sms.14275. Epub 2022 Dec 20. PMID: 36539388; PMCID: PMC9880648.
[3] Moulson N, Petek BJ, Drezner JA, et al. SARS‐CoV‐2 cardiac involvement in young competitive athletes. Circulation. 2021;144:256‐266.
[4] Miriam Merad et al. The immunology and immunopathology of COVID-19.Science375,1122-1127(2022).DOI:10.1126/science.abm8108
[5] COVID-19 Med. Prakt., 2024; Available from: https://www.mp.pl/interna/chapter/B16.II.18.1.13. [Accessed: 28 December 2024]
[6] Chenchula S, Karunakaran P, Sharma S, Chavan M. Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. J Med Virol. 2022 Jul;94(7):2969-2976. doi: 10.1002/jmv.27697. Epub 2022 Mar 14. PMID: 35246846; PMCID: PMC9088621.
[7] Chilazi M, Duffy EY, Thakkar A, Michos ED. COVID and Cardiovascular Disease: What We Know in 2021. Curr Atheroscler Rep. 2021 May 13;23(7):37. doi: 10.1007/s11883-021-00935-2. PMID: 33983522; PMCID: PMC8117457.
[8] Sandoval Y, Januzzi JL, Jr, Jaffe AS. Cardiac troponin for assessment of myocardial injury in COVID-19: JACC review topic of the week. J Am Coll Cardiol. 2020;76(10):1244–1258. doi: 10.1016/j.jacc.2020.06.068.
[9] Masson S, Caironi P, Fanizza C, Carrer S, Caricato A, Fassini P, Vago T, Romero M, Tognoni G, Gattinoni L, Latini R, Albumin Italian Outcome Sepsis Study Investigators Sequential N-terminal pro-B-type natriuretic peptide and high-sensitivity cardiac troponin measurements during albumin replacement in patients with severe sepsis or septic shock. Crit Care Med. 2016;44(4):707–716. doi: 10.1097/
[10] Metkus TS, Guallar E, Sokoll L, Morrow D, Tomaselli G, Brower R, Schulman S, Korley FK. Prevalence and prognostic association of circulating troponin in the acute respiratory distress syndrome. Crit Care Med. 2017;45(10):1709–1717. doi: 10.1097/CCM.0000000000002641.
[11] Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci. 2020 Apr 10;5(5):518-536. doi: 10.1016/j.jacbts.2020.04.002. PMID: 32292848; PMCID: PMC7151394.
[12] Lindner D, Fitzek A, Brauninger H, Aleshcheva G, Edler C, Meissner K, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–1285. doi: 10.1001/jamacardio.2020.3551.
[13] Khan MS, Shahid I, Anker SD, Solomon SD, Vardeny O, Michos ED, Fonarow GC, Butler J. Cardiovascular implications of COVID-19 versus influenza infection: a review. BMC Med. 2020;18(1):403. doi: 10.1186/s12916-020-01816-2.
[14] Kwong JC, Schwartz KL, Campitelli MA, Chung H, Crowcroft NS, Karnauchow T, Katz K, Ko DT, McGeer AJ, McNally D, Richardson DC, Rosella LC, Simor A, Smieja M, Zahariadis G, Gubbay JB. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378(4):345–353. doi: 10.1056/NEJMoa1702090.
[15] Hendren NS, Drazner MH, Bozkurt B, Cooper LT., Jr Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020;141(23):1903–1914. doi: 10.1161/CIRCULATIONAHA.120.047349.
[16] Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiol. 2020;5(7):811–818. doi: 10.1001/jamacardio.2020.1017.
[17] Qin JJ, Cheng X, Zhou F, Lei F, Akolkar G, Cai J, Zhang XJ, Blet A, Xie J, Zhang P, Liu YM, Huang Z, Zhao LP, Lin L, Xia M, Chen MM, Song X, Bai L, Chen Z, Zhang X, Xiang D, Chen J, Xu Q, Ma X, Touyz RM, Gao C, Wang H, Liu L, Mao W, Luo P, Yan Y, Ye P, Chen M, Chen G, Zhu L, She ZG, Huang X, Yuan Y, Zhang BH, Wang Y, Liu PP, Li H. Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19. Hypertension. 2020;76(4):1104–1112. doi: 10.1161/HYPERTENSIONAHA.120.15528.
[18] Li D, Chen Y, Jia Y, Tong L, Tong J, Wang W, Liu Y, Wan Z, Cao Y, Zeng R. SARS-CoV-2-induced immune dysregulation and myocardial injury risk in China: insights from the ERS-COVID-19 study. Circ Res. 2020;127(3):397–399. doi: 10.1161/CIRCRESAHA.120.317070.
[19] Harmon K.G., Asif I.M., Maleszewski J.J., et al. Incidence, cause, and comparative frequency of sudden cardiac death in national collegiate athletic association athletes. Circulation. 2015;132:10–19. doi: 10.1161/CIRCULATIONAHA.115.015431.
[20] Maron B.J., Doerer J.J., Haas T.S., et al. Sudden deaths in young competitive athletes. Circulation. 2009;119:1085–1092. doi: 10.1161/CIRCULATIONAHA.108.804617.
[21] Nieman D.C. Marathon training and immune function. Sports Med. 2007;37:412–415. doi: 10.2165/00007256-200737040-00036.
[22] Fung G., Luo H., Qiu Y., et al. Myocarditis. Circ Res. 2016;118:496–514. doi: 10.1161/CIRCRESAHA.115.306573.
[23] Ammirati E., Frigerio M., Adler E., et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy. Circ Heart Fail. 2020;13e:007405. doi: 10.1161/CIRCHEARTFAILURE.120.007405.
[24] Halle M., Binzenhöfer L., Mahrholdt H., et al. Myocarditis in athletes: a clinical perspective. Eur J Prev Cardiol. 2020;3 doi: 10.1177/2047487320909670. Published online March.
[25] Kociol R.D., Cooper L.T., Fang J.C., et al. Recognition and initial management of fulminant myocarditis. Circulation. 2020;141:e69–e92. doi: 10.1161/CIR.0000000000000745.
[26] Harris K., Mackey-Bojack S., Bennett, et al. Sudden unexpected death due to myocarditis in young people, including athletes. Am J Cardiol. 2021;143:131–134. doi: 10.1016/j.amjcard.2020.12.028.
[27] Carforio A., Pankuweit S., Arbustini E., et al. Current state of knowledge on etiology, diagnosis, management, and therapy of myocarditis: A position statement of the european society of cardiology working group on myocardial and pericardial disease. Eur Heart J. 2013;34:2636–2648a. doi: 10.1093/eurheartj/eht210.
[28] Phelan D., Kim J., Elliott M., et al. Screening of potential cardiac involvement in competitive athletes recovering from COVID-19. An expert consensus statement. JACC Cardiovasc Imaging. 2020;13:2635–2652. doi: 10.1016/j.jcmg.2020.10.005.
[29] Shave R., Baggish A., George K., et al. Exercise-induced cardiac troponin elevation. Evidence, mechanisms, and implications. J Am Coll Cardiol. 2010;56:169–176. doi: 10.1016/j.jacc.2010.03.037.
[30] Sharma S., Drezner J., Baggish A., et al. International recommendations for electrocardiographic interpretation in athletes. J Am Coll Cardiol. 2017;69:1057–1075. doi: 10.1016/j.jacc.2017.01.015.
[31] Daniels C.J., Rajpal S., Greenshields J.T., et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: results from the big ten COVID-19 cardiac registry. JAMA Cardiol. 2021;27:E1–E10. doi: 10.1001/jamacardio.2021.2065. Published online May.
[32] Ammirati E., Veronese G., Brambatti M., et al. Fulminant versus acute nonfulminant myocarditis in patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2019;74:299–311. doi: 10.1016/j.jacc.2019.04.063
[33] Symanski JD, Tso JV, Phelan DM, Kim JH. Myocarditis in the Athlete: A Focus on COVID-19 Sequelae. Clin Sports Med. 2022 Jul;41(3):455-472. doi: 10.1016/j.csm.2022.02.007. Epub 2022 Feb 17. PMID: 35710272; PMCID: PMC8849834.
[34] Cooper L., Baughman K., Feldman A., et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology: endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol. 2007;50:1914–1931. doi: 10.1016/j.jacc.2007.09.008.
[35] Brito D, Meester S, Yanamala N, et al. High prevalence of pericardial involvement in college student athletes recovering from COVID‐19. JACC Cardiovasc Imaging. 2021;14(3):541‐555.
[36] Małek ŁA, Marczak M, Miłosz‐Wieczorek B, et al. Cardiac involvement in consecutive elite athletes recovered from Covid‐19: a magnetic resonance study. J Magn Reson Imaging. 2021;53(6):1723‐1729.
[37] van Hattum JC, Spies JL, Verwijs SM, et al. Cardiac abnormalities in athletes after SARS‐CoV‐2 infection: a systematic review. BMJ Open Sport Exerc Med. 2021;7:1164.
[38] Moulson N., Petek B.J., Drezner J.A., et al. Outcomes registry for cardiac conditions in athletes investigators. SARS-CoV-2 cardiac involvement in young competitive athletes. Circulation. 2021;144:256–266. doi: 10.1161/CIRCULATIONAHA.121.054824.
[39] Fussner L., Karlstedt E., Hodge D., et al. Management and outcomes of cardiac sarcoidosis: a 20-year experience in two tertiary care centres. Eur J Heart Fail. 2018;20:1713–1720. doi: 10.1002/ejhf.1319.
[40] Maron B.J., Udelson J.E., Bonow R.O., et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis. Circulation. 2015;132:e273–e280. doi: 10.1161/CIR.0000000000000239.
[41] Phelan D., Kim J.H., Chung E.H. A game plan for the resumption of sport and exercise after coronavirus disease 2019 (COVID-19) Infection. JAMA Cardiol. 2020;5:1085–1086. doi: 10.1001/jamacardio.2020.2136.
[42] Baratto, C. , Caravita, S. , Faini, A. , Perego, G. B. , Senni, M. , Badano, L. P. , & Parati, G. (2021). Impact of COVID‐19 on exercise pathophysiology: A combined cardiopulmonary and echocardiographic exercise study. Journal of Applied Physiology, 130, 1470–1478.
[43] Rinaldo, R. F. , Mondoni, M. , Parazzini, E. M. , Pitari, F. , Brambilla, E. , Luraschi, S. , Balbi, M. , Sferrazza Papa, G. F. , Sotgiu, G. , Guazzi, M. , Di Marco, F. , & Centanni, S. (2021). Deconditioning as main mechanism of impaired exercise response in COVID‐19 survivors. The European Respiratory Journal, 58, 2100870.
[44] Komici K, Bencivenga L, Rengo G, Bianco A, Guerra G. Ventilatory efficiency in post-COVID-19 athletes. Physiol Rep. 2023 Sep;11(18):e15795. doi: 10.14814/phy2.15795. PMID: 37734918; PMCID: PMC10513909.
[45] Frésard, I. , Genecand, L. , Altarelli, M. , Gex, G. , Vremaroiu, P. , Vremaroiu‐Coman, A. , Lawi, D. , & Bridevaux, P. O. (2022). Dysfunctional breathing diagnosed by cardiopulmonary exercise testing in 'long COVID' patients with persistent dyspnoea. BMJ Open Respiratory Research, 9(1), e001126.
[46] Milovancev A, Avakumovic J, Lakicevic N, et al. Cardiorespiratory fitness in volleyball athletes following a covid‐19 infection: a cross‐sectional study. Int J Environ Res Public Health. 2021;18(8):4059.
[47] Çelik Z, Güzel NA, Kafa N, Köktürk N. Respiratory muscle strength in volleyball players suffered from COVID‐19. Ir J Med Sci. 2021;191:1959‐1965.
[48] Gattoni C, Conti E, Casolo A, et al. COVID‐19 disease in professional football players: symptoms and impact on pulmonary function and metabolic power during matches. Physiol Rep. 2022;10(11):e15337.
[49] Komici K, Bianco A, Perrotta F, et al. Clinical characteristics, exercise capacity and pulmonary function in post‐covid‐19 competitive athletes. J Clin Med. 2021;10(14):3053
[50] Moulson N, Gustus SK, Scirica C, et al. Diagnostic evaluation and cardiopulmonary exercise test findings in young athletes with persistent symptoms following COVID‐19. Br J Sports Med. 2022;56:927‐932. doi: 10.1136/bjsports-2021-105157
[51] Gervasi SF, Pengue L, Damato L, et al. Is extensive cardiopulmonary screening useful in athletes with previous asymptomatic or mild SARS‐CoV‐2 infection? Br J Sports Med. 2021;55(1):54‐61.
[52] Anastasio F, Rossi G, D'Abbondanza M, Curcio R, Vaudo G, Pucci G. Mid term impact of mil‐moderate COVID‐19 on cardiorespiratory fitness in elite athletes. J Sports Med Phys Fitness. 2021;62:1383‐1390.
[53] Fikenzer S, Kogel A, Pietsch C, et al. SARS‐CoV2 infection: functional and morphological cardiopulmonary changes in elite handball players. Sci Rep. 2021;11(1):17798.
[54] Moulson N, Gustus SK, Scirica C, et al. Diagnostic evaluation and cardiopulmonary exercise test findings in young athletes with persistent symptoms following COVID‐19. Br J Sports Med. 2022;56:927‐932. doi: 10.1136/bjsports-2021-105157
[55] Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of post-acute covid-19 in primary care. BMJ. 2020;370:m3026. doi: 10.1136/bmj.m3026.
[56] Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023 Mar;21(3):133-146. doi: 10.1038/s41579-022-00846-2. Epub 2023 Jan 13. Erratum in: Nat Rev Microbiol. 2023 Jun;21(6):408. doi: 10.1038/s41579-023-00896-0. PMID: 36639608; PMCID: PMC9839201.
[57] Gheorghita R, Soldanescu I, Lobiuc A, Caliman Sturdza OA, Filip R, Constantinescu-Bercu A, Dimian M, Mangul S, Covasa M. The knowns and unknowns of long COVID-19: from mechanisms to therapeutical approaches. Front Immunol. 2024 Mar 4;15:1344086. doi: 10.3389/fimmu.2024.1344086. PMID: 38500880; PMCID: PMC10944866.
[58] Mazza MG De Lorenzo R Conte C, et al. Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav. Immun. 2020; 89:594–600.
[59] Pavli A., Theodoridou M., Maltezou H.C. Post-COVID syndrome: incidence, clinical spectrum, and challenges for primary healthcare professionals. Arch Med Res. 2021;52:575–581. doi: 10.1016/j.arcmed.2021.03.010.
[60] Petek BJ, Moulson N, Baggish AL, et al. Prevalence and clinical implications of persistent or exertional cardiopulmonary symptoms following SARS‐CoV‐2 infection in 3597 collegiate athletes: a study from the outcomes registry for cardiac conditions in athletes (ORCCA). Br J Sports Med. 2021;56:913‐918.
[61] Hull JH, Wootten M, Moghal M, et al. Clinical patterns, recovery time and prolonged impact of COVID‐19 illness in international athletes: the UK experience. Br J Sports Med. 2022;56(1):4‐11.
[62] Schwellnus M, Sewry N, Snyders C, et al. Symptom cluster is associated with prolonged return‐to‐play in symptomatic athletes with acute respiratory illness (including COVID‐19): a cross‐sectional study‐AWARE study I. Br J Sports Med. 2021;55(20):1144‐1152.
[63] Gold JE, Okyay RA, Licht WE, Hurley DJ. Investigation of long covid prevalence and its relationship to epstein‐barr virus reactivation. Pathogens. 2021;10(6):763
[64] Nabavi N. Long COVID: how to define it and how to manage it. BMJ. 2020; 370:m3489.
[65] Yancey JR, Thomas SM. Chronic fatigue syndrome: diagnosis and treatment. Am Fam Physician. 2012 Oct 15;86(8):741-6. PMID: 23062157.
[66] Giusto E, Asplund CA. Persistent COVID and a Return to Sport. Curr Sports Med Rep. 2022 Mar 1;21(3):100-104. doi: 10.1249/JSR.0000000000000943. PMID: 35245245; PMCID: PMC8900881.
[67] Arnold DT Milne A Samms E, et al. Are vaccines safe in patients with long COVID? A prospective observational study. medRxiv Published online March 14, 2021. doi: 10.1101/2021/03.11.21253225.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Maria Spychalska, Jan Spychalski

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 104
Number of citations: 0