Impact of Exercise on the Course of Parkinson’s Disease: A Systematic Review
DOI:
https://doi.org/10.12775/QS.2025.39.58847Keywords
Parkinson's disease, physical activity, quality of life, exercisesAbstract
Aim of the study
The aim of this article is to review scientific research on the impact of physical activity on the progression of Parkinson’s disease. Specifically, we will discuss the quality of life of patients with Parkinson’s disease, various types of physical activity that influence both motor and non-motor symptoms, and the molecular mechanisms through which physical activity affects the human body.
Materials and Methods
The authors conducted an extensive review of articles available in PubMed, Google Scholar, UpToDate. The keywords Parkinson’s disease, physical activity, quality of life and exercises were the basis of the review. Studies published between 1992 and 2024 were included in the review.
Conclusions
Physical activity is beneficial for clinical outcomes and quality of life in patients with Parkinson’s disease.
References
1. Salim S, Ahmad F, Banu A, Mohammad F. Gut microbiome and Parkinson's disease: Perspective on pathogenesis and treatment. J Adv Res. 2023 Aug;50:83-105. Epub 2022 Nov 1. PMID: 36332796; PMCID: PMC10403695. https://doi.org/10.1016/j.jare.2022.10.013
2. Hirsch EC, Standaert DG. Ten Unsolved Questions About Neuroinflammation in Parkinson's Disease. Mov Disord. 2021 Jan;36(1):16-24. Epub 2020 May 1. PMID: 32357266. https://doi.org/10.1002/mds.28075
3. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE. Parkinson disease. Nat Rev Dis Primers. 2017 Mar 23;3:17013. PMID: 28332488. https://doi.org/10.1038/nrdp.2017.13
4. Aubignat M, Tir M, Krystkowiak P. Les symptômes non-moteurs de la maladie de Parkinson de la physiopathologie au diagnostic précoce [Non-motor symptoms of Parkinson's disease from pathophysiology to early diagnosis]. Rev Med Interne. 2021 Apr;42(4):251-257. French. Epub 2020 Jul 15. PMID: 32680717. https://doi.org/10.1016/j.revmed.2020.06.019
5. Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. J Neurochem. 2016 Oct;139 Suppl 1:318-324. Epub 2016 Jul 11. PMID: 27401947. https://doi.org/10.1111/jnc.13691
6. Aradi SD, Hauser RA. Medical Management and Prevention of Motor Complications in Parkinson's Disease. Neurotherapeutics. 2020 Oct;17(4):1339-1365. PMID: 32761324; PMCID: PMC7851275. https://doi.org/10.1007/s13311-020-00889-4
7. Gonçalves VC, Cuenca-Bermejo L, Fernandez-Villalba E, Martin-Balbuena S, da Silva Fernandes MJ, Scorza CA, Herrero MT. Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson's Disease. Neuroscientist. 2022 Dec;28(6):530-542. Epub 2021 Feb 15. PMID: 33583239. https://doi.org/10.1177/1073858421990000
8. Chen Z, Li G, Liu J. Autonomic dysfunction in Parkinson's disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol Dis. 2020 Feb;134:104700. Epub 2019 Dec 3. PMID: 31809788. https://doi.org/10.1016/j.nbd.2019.104700
9. Pfeiffer RF. Autonomic Dysfunction in Parkinson's Disease. Neurotherapeutics. 2020 Oct;17(4):1464-1479. PMID: 32789741; PMCID: PMC7851208. https://doi.org/10.1007/s13311-020-00897-4
10. Langeskov-Christensen M, Franzén E, Grøndahl Hvid L, Dalgas U. Exercise as medicine in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2024 Oct 16;95(11):1077-1088. PMID: 38418216. https://doi.org/10.1136/jnnp-2023-332974
11. Barone P, Erro R, Picillo M. Quality of Life and Nonmotor Symptoms in Parkinson's Disease. Int Rev Neurobiol. 2017;133:499-516. Epub 2017 Jul 15. PMID: 28802930. https://doi.org/10.1016/bs.irn.2017.05.023
12. Crispino P, Gino M, Barbagelata E, Ciarambino T, Politi C, Ambrosino I, Ragusa R, Marranzano M, Biondi A, Vacante M. Gender Differences and Quality of Life in Parkinson's Disease. Int J Environ Res Public Health. 2020 Dec 29;18(1):198. PMID: 33383855; PMCID: PMC7795924. https://doi.org/10.3390/ijerph18010198
13. Hoseinipalangi Z, Pashazadeh Kan F, Hosseinifard H, Doustmehraban M, Masoumi M, Rafiei S, Barmayoon P, Ahmadi N, Dehnad A, Eshtod H, Asl MT, Sadat Hoseini B, Nasiri M, Arian M, Aghalou S, Ghashghaee A. Systematic review and meta-analysis of the quality-of-life of patients with Parkinson's disease. East Mediterr Health J. 2023 Jan 19;29(1):63-70. PMID: 36710616. https://doi.org/10.26719/emhj.23.013
14. Bock MA, Brown EG, Zhang L, Tanner C. Association of Motor and Nonmotor Symptoms With Health-Related Quality of Life in a Large Online Cohort of People With Parkinson Disease. Neurology. 2022 May 31;98(22):e2194-e2203. Epub 2022 Apr 13. PMID: 35418456; PMCID: PMC9162165. https://doi.org/10.1212/WNL.0000000000200113
15. Fan B, Jabeen R, Bo B, Guo C, Han M, Zhang H, Cen J, Ji X, Wei J. What and How Can Physical Activity Prevention Function on Parkinson's Disease? Oxid Med Cell Longev. 2020 Feb 13;2020:4293071. PMID: 32215173; PMCID: PMC7042542. https://doi.org/10.1155/2020/4293071
16. Alberts JL, Rosenfeldt AB. The Universal Prescription for Parkinson's Disease: Exercise. J Parkinsons Dis. 2020;10(s1):S21-S27. PMID: 32925109; PMCID: PMC7592674. https://doi.org/10.3233/JPD-202100
17. Still A, Hale L, Alam S, Morris ME, Jayakaran P. Relationships between physical activities performed under free-living conditions and non-motor symptoms in people with Parkinson's: A systematic review and meta-analysis. Clin Rehabil. 2024 Nov;38(11):1534-1551. Epub 2024 Aug 23. PMID: 39175369; PMCID: PMC11528973. https://doi.org/10.1177/02692155241272967
18. Song R, Grabowska W, Park M, Osypiuk K, Vergara-Diaz GP, Bonato P, Hausdorff JM, Fox M, Sudarsky LR, Macklin E, Wayne PM. The impact of Tai Chi and Qigong mind-body exercises on motor and non-motor function and quality of life in Parkinson's disease: A systematic review and meta-analysis. Parkinsonism Relat Disord. 2017 Aug;41:3-13. Epub 2017 May 25. PMID: 28602515; PMCID: PMC5618798. https://doi.org/10.1016/j.parkreldis.2017.05.019
19. Lötzke D, Ostermann T, Büssing A. Argentine tango in Parkinson disease--a systematic review and meta-analysis. BMC Neurol. 2015 Nov 5;15:226. PMID: 26542475; PMCID: PMC4636067. https://doi.org/10.1186/s12883-015-0484-0
20. Gomes Neto M, Pontes SS, Almeida LO, da Silva CM, da Conceição Sena C, Saquetto MB. Effects of water-based exercise on functioning and quality of life in people with Parkinson's disease: a systematic review and meta-analysis. Clin Rehabil. 2020 Dec;34(12):1425-1435. Epub 2020 Jul 27. PMID: 32715810. https://doi.org/10.1177/0269215520943660
21. Salse-Batán J, Sanchez-Lastra MA, Suarez-Iglesias D, Varela S, Ayán C. Effects of Nordic walking in people with Parkinson's disease: A systematic review and meta-analysis. Health Soc Care Community. 2022 Sep;30(5):e1505-e1520. Epub 2022 May 20. PMID: 35593147. https://doi.org/10.1111/hsc.13842
22. Suárez-Iglesias D, Miller KJ, Seijo-Martínez M, Ayán C. Benefits of Pilates in Parkinson's Disease: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2019 Aug 13;55(8):476. PMID: 31412676; PMCID: PMC6723274. https://doi.org/10.3390/medicina55080476
23. Leal-Cerro A, Gippini A, Amaya MJ, Lage M, Mato JA, Dieguez C, Casanueva FF. Mechanisms underlying the neuroendocrine response to physical exercise. J Endocrinol Invest. 2003 Sep;26(9):879-85. PMID: 14964441. https://doi.org/10.1007/BF03345239
24. Viru A. Plasma hormones and physical exercise. Int J Sports Med. 1992 Apr;13(3):201-9. PMID: 1601554. https://doi.org/10.1055/s-2007-1021254
25. Meeusen R, De Meirleir K. Exercise and brain neurotransmission. Sports Med. 1995 Sep;20(3):160-88. PMID: 8571000. https://doi.org/10.2165/00007256-199520030-00004
26. Sutoo D, Akiyama K. Regulation of brain function by exercise. Neurobiol Dis. 2003 Jun;13(1):1-14. PMID: 12758062. https://doi.org/10.1016/s0969-9961(03)00030-5
27. Chen HI, Lin LC, Yu L, Liu YF, Kuo YM, Huang AM, Chuang JI, Wu FS, Liao PC, Jen CJ. Treadmill exercise enhances passive avoidance learning in rats: the role of down-regulated serotonin system in the limbic system. Neurobiol Learn Mem. 2008 May;89(4):489-96. Epub 2007 Sep 24. PMID: 17892954. https://doi.org/10.1016/j.nlm.2007.08.004
28. Chennaoui M, Grimaldi B, Fillion MP, Bonnin A, Drogou C, Fillion G, Guezennec CY. Effects of physical training on functional activity of 5-HT1B receptors in rat central nervous system: role of 5-HT-moduline. Naunyn Schmiedebergs Arch Pharmacol. 2000 Jun;361(6):600-4. PMID: 10882034. https://doi.org/10.1007/s002100000242
29. Dunn AL, Reigle TG, Youngstedt SD, Armstrong RB, Dishman RK. Brain norepinephrine and metabolites after treadmill training and wheel running in rats. Med Sci Sports Exerc. 1996 Feb;28(2):204-9. PMID: 8775155. https://doi.org/10.1097/00005768-199602000-00008
30. Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA. A distinct role for norepinephrine in memory retrieval. Cell. 2004 Apr 2;117(1):131-43. PMID: 15066288. https://doi.org/10.1016/s0092-8674(04)00259-4
31. Pauli JR, Cintra DE, Souza CT, Ropelle ER. Novos mecanismos pelos quais o exercício físico melhora a resistência à insulina no músculo esquelético [New mechanisms by which physical exercise improves insulin resistance in the skeletal muscle]. Arq Bras Endocrinol Metabol. 2009 Jun;53(4):399-408. Portuguese. PMID: 19649376. https://doi.org/10.1590/s0004-27302009000400003
32. Kuga GK, Botezelli JD, Gaspar RC, Gomes RJ, Pauli JR, Leme JAC de A. Hippocampal insulin signaling and neuroprotection mediated by physical exercise in Alzheimer´s Disease. Motriz: rev educ fis [Internet]. 2017;23(spe):e101608. https://doi.org/10.1590/S1980-6574201700SI0008
33. Lin TW, Shih YH, Chen SJ, Lien CH, Chang CY, Huang TY, Chen SH, Jen CJ, Kuo YM. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice. Neurobiol Learn Mem. 2015 Feb;118:189-97. Epub 2014 Dec 24. PMID: 25543023. https://doi.org/10.1016/j.nlm.2014.12.005
34. Zsuga J, Tajti G, Papp C, Juhasz B, Gesztelyi R. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation. Med Hypotheses. 2016 May;90:23-8. Epub 2016 Mar 2. PMID: 27063080. https://doi.org/10.1016/j.mehy.2016.02.020
35. Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience. 2013 Jun 14;240:155-62. Epub 2013 Mar 5. PMID: 23470775; PMCID: PMC3637839. https://doi.org/10.1016/j.neuroscience.2013.02.050
36. Li DJ, Li YH, Yuan HB, Qu LF, Wang P. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism. 2017 Mar;68:31-42. Epub 2016 Dec 11. PMID: 28183451. https://doi.org/10.1016/j.metabol.2016.12.003
37. Monteiro-Junior RS, Cevada T, Oliveira BR, Lattari E, Portugal EM, Carvalho A, Deslandes AC. We need to move more: Neurobiological hypotheses of physical exercise as a treatment for Parkinson's disease. Med Hypotheses. 2015 Nov;85(5):537-41. Epub 2015 Jul 17. PMID: 26209418. https://doi.org/10.1016/j.mehy.2015.07.011
38. Krause M, Rodrigues-Krause Jda C. Extracellular heat shock proteins (eHSP70) in exercise: Possible targets outside the immune system and their role for neurodegenerative disorders treatment. Med Hypotheses. 2011 Feb;76(2):286-90. Epub 2010 Nov 10. PMID: 21071151. https://doi.org/10.1016/j.mehy.2010.10.025
39. Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012 Dec 5;16(6):706-22. Epub 2012 Nov 15. PMID: 23168220; PMCID: PMC3518570. https://doi.org/10.1016/j.cmet.2012.08.012
40. Maruzs T, Simon-Vecsei Z, Kiss V, Csizmadia T, Juhász G. On the Fly: Recent Progress on Autophagy and Aging in Drosophila. Front Cell Dev Biol. 2019 Jul 24;7:140. PMID: 31396511; PMCID: PMC6667644. https://doi.org/10.3389/fcell.2019.00140
41. Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med. 2017 Jan;102:203-216. Epub 2016 Nov 29. PMID: 27908782; PMCID: PMC5209274. https://doi.org/10.1016/j.freeradbiomed.2016.11.045
42. Serra FT, Carvalho AD, Araujo BHS, Torres LB, Cardoso FDS, Henrique JS, Placencia EVD, Lent R, Gomez-Pinilla F, Arida RM, Gomes da Silva S. Early exercise induces long-lasting morphological changes in cortical and hippocampal neurons throughout of a sedentary period of rats. Sci Rep. 2019 Sep 23;9(1):13684. PMID: 31548605; PMCID: PMC6757043. https://doi.org/10.1038/s41598-019-50218-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Aleksandra Sadowska, Aleksandra Welkier, Adam Sobiński, Joanna Miśkiewicz, Aleksandra Dudek, Patrycja Pietrusińska, Jakub Moder, Anna Dziewierz , Paula Kwaśniewska, Patrycja Śliwa-Tytko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 76
Number of citations: 0