Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

How Does Acute Blood Flow Restriction Resistance Training Influence Free Fatty Acids in Obese Individuals?
  • Home
  • /
  • How Does Acute Blood Flow Restriction Resistance Training Influence Free Fatty Acids in Obese Individuals?
  1. Home /
  2. Archives /
  3. Vol. 38 (2025) /
  4. Health Sciences

How Does Acute Blood Flow Restriction Resistance Training Influence Free Fatty Acids in Obese Individuals?

Authors

  • Haodong Tian College of Physical Education, Southwest University, Chongqing, China; Key Laboratory of Physical Fitness Evaluation and Sports Function Monitoring of General Administration of Sport of China
  • Qiu Xiang Chongqing Sports Science Research Institute
  • Li Huang College of Physical Education, Southwest University, Chongqing, China; Key Laboratory of Physical Fitness Evaluation and Sports Function Monitoring of General Administration of Sport of China
  • Haowei Liu College of Physical Education, Southwest University, Chongqing, China; Key Laboratory of Physical Fitness Evaluation and Sports Function Monitoring of General Administration of Sport of China
  • Hanglin Yu College of Physical Education, Southwest University, Chongqing, China; Key Laboratory of Physical Fitness Evaluation and Sports Function Monitoring of General Administration of Sport of China
  • Jinlong Wu College of Physical Education, Southwest University, Chongqing, China; Key Laboratory of Physical Fitness Evaluation and Sports Function Monitoring of General Administration of Sport of China
  • Hansen Li Sichuan Agricultural University
  • Jujiao Kuang Institute for Health and Sport, Victoria University, Melbourne, Australia; Australia Institute for Musculoskeletal Sciences, Melbourne, Australia
  • Xu Yan Institute for Health and Sport, Victoria University, Melbourne, Australia; Australia Institute for Musculoskeletal Sciences, Melbourne, Australia; Department of Medicine-Western Health, The University of Melbourne, Melbourne, Australia
  • Li Peng College of Physical Education, Southwest University, Chongqing, China; Key Laboratory of Physical Fitness Evaluation and Sports Function Monitoring of General Administration of Sport of China

DOI:

https://doi.org/10.12775/QS.2025.38.58841

Keywords

free fatty acids, blood flow restriction resistance exercise, the obese, hypoxia, vascular, angiogenesis

Abstract

Background FFAs play an important role in the obesity management. Recent studies suggest that BFR training may also influence metabolic responses, including the regulation of FFAs in the bloodstream. Understanding how acute BFR resistance training affects FFAs could provide valuable insights into effective interventions for improving metabolic health in this population. Methods A two-arm randomized controlled design was employed. A total of 22 eligible subjects were randomly divided into BFR-RE (n=11) and RE group (RE, n=11). Each participant underwent an acute moderate-intensity exercise intervention. Venous blood samples were collected at Pre, Post 0h, Post 1h, and Post 24h. FFAs, ANG-Ⅱ, NO, HIF-1α, and VEGF-A were measured. Results Significant group effects were observed in FFAs, ANG-Ⅱ, VEGF-A, and NO; significant time effects were observed in FFAs and NO; significant interactions of group*time were observed in HIF-1α and NO. In BFR-RE group, FFAs significantly decreased at Post 1h and Post 24h; HIF-1α increased significantly at Post 0h, Post 1h, and Post 24h; VEGF-A significantly increased at Post 0h and then decreased until Post 24h. In RE group, FFAs also significantly decreased at Post 1h and Post 24h; HIF-1α significantly decreased at Post 24h; NO significantly decreased at Post 0h, then increased until Post 24h. Conclusions BFR-RE showed advantages in reducing the plasma FFAs of obese individuals compared to RE. The vasodilation and angiogenic responses induced by BFR-RE may be the reason for this difference, which supported BFR-RE as a hypoxic training modality to improve obesity.

References

1. Al Mahri S, Malik SS, Al Ibrahim M, Haji E, Dairi G, Mohammad S. Free Fatty Acid Receptors (FFARs) in Adipose: Physiological Role and Therapeutic Outlook. Cells. 2022;11(4):750. doi:10.3390/cells11040750

2. Cao C, Koh HCE, Van Vliet S, et al. Increased plasma fatty acid clearance, not fatty acid concentration, is associated with muscle insulin resistance in people with obesity. Metabolism. 2022;132:155216. doi:10.1016/j.metabol.2022.155216

3. Boden G. Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):139-143. doi:10.1097/MED.0b013e3283444b09

4. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994;93(6):2438-2446. doi:10.1172/JCI117252

5. Cusi K, Kashyap S, Gastaldelli A, Bajaj M, Cersosimo E. Effects on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(6):E1775-1781. doi:10.1152/ajpendo.00624.2006

6. Dunbar RL, Goel H. Niacin Alternatives for Dyslipidemia: Fool’s Gold or Gold Mine? Part I: Alternative Niacin Regimens. Curr Atheroscler Rep. 2016;18(2):11. doi:10.1007/s11883-016-0563-8

7. Weng X, Wang C, Yuan YU, et al. Effect of Cold Exposure and Exercise on Insulin Sensitivity and Serum Free Fatty Acids in Obese Rats. Med Sci Sports Exerc. 2023;55(8):1409-1415. doi:10.1249/MSS.0000000000003173

8. Mekonen W, Schwaberger G, Lamprecht M, Hofmann P. Whole Body Substrate Metabolism during Different Exercise Intensities with Special Emphasis on Blood Protein Changes in Trained Subjects-A Pilot Study. J Funct Morphol Kinesiol. 2023;8(3):102. doi:10.3390/jfmk8030102

9. Johnson ML, Zarins Z, Fattor JA, et al. Twelve weeks of endurance training increases FFA mobilization and reesterification in postmenopausal women. J Appl Physiol Bethesda Md 1985. 2010;109(6):1573-1581. doi:10.1152/japplphysiol.00116.2010

10. Jabbour G, Iancu HD, Paulin A, Lavoie JM, Lemoine-Morel S, Zouhal H. Effects of Acute Supramaximal Cycle Exercise on Plasma FFA Concentration in Obese Adolescent Boys. PloS One. 2015;10(6):e0129654. doi:10.1371/journal.pone.0129654

11. Dyck DJ, Miskovic D, Code L, Luiken JJ, Bonen A. Endurance training increases FFA oxidation and reduces triacylglycerol utilization in contracting rat soleus. Am J Physiol Endocrinol Metab. 2000;278(5):E778-785. doi:10.1152/ajpendo.2000.278.5.E778

12. Tomczyk M, Braczko A, Jablonska P, et al. Enhanced Muscle Strength in Dyslipidemic Mice and Its Relation to Increased Capacity for Fatty Acid Oxidation. Int J Mol Sci. 2021;22(22):12251. doi:10.3390/ijms222212251

13. Eskelinen JJ, Heinonen I, Löyttyniemi E, et al. Muscle-specific glucose and free fatty acid uptake after sprint interval and moderate-intensity training in healthy middle-aged men. J Appl Physiol Bethesda Md 1985. 2015;118(9):1172-1180. doi:10.1152/japplphysiol.01122.2014

14. Loenneke JP, Fahs CA, Rossow LM, et al. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903-2912. doi:10.1007/s00421-011-2266-8

15. Tian H, Li H, Liu H, et al. Can Blood Flow Restriction Training Benefit Post-Activation Potentiation? A Systematic Review of Controlled Trials. Int J Environ Res Public Health. 2022;19(19):11954. doi:10.3390/ijerph191911954

16. Willis SJ, Millet GP, Borrani F. Insights for Blood Flow Restriction and Hypoxia in Leg Versus Arm Submaximal Exercise. Int J Sports Physiol Perform. 2020;15(5):714-719. doi:10.1123/ijspp.2019-0168

17. Blegen M, Cheatham C, Caine-Bish N, Woolverton C, Marcinkiewicz J, Glickman E. The immunological and metabolic responses to exercise of varying intensities in normoxic and hypoxic environments. J Strength Cond Res. 2008;22(5):1638-1644. doi:10.1519/JSC.0b013e318181fdfd

18. Bailey DM, Davies B, Baker J. Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men. Med Sci Sports Exerc. 2000;32(6):1058-1066. doi:10.1097/00005768-200006000-00004

19. Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13(2):167-171. doi:10.1016/s0955-0674(00)00194-0

20. Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev. 2018;98(3):1627-1738. doi:10.1152/physrev.00038.2017

21. Andrabi SM, Sharma NS, Karan A, et al. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv Sci Weinh Baden-Wurtt Ger. 2023;10(30):e2303259. doi:10.1002/advs.202303259

22. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1-452.

23. Danaher J, Gerber T, Wellard RM, Stathis CG, Cooke MB. The use of metabolomics to monitor simultaneous changes in metabolic variables following supramaximal low volume high intensity exercise. Metabolomics. 2015;12(1):7. doi:10.1007/s11306-015-0883-7

24. Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab. 2014;307(7):E539-552. doi:10.1152/ajpendo.00276.2014

25. Bok D, Rakovac M, Foster C. An Examination and Critique of Subjective Methods to Determine Exercise Intensity: The Talk Test, Feeling Scale, and Rating of Perceived Exertion. Sports Med Auckl NZ. 2022;52(9):2085-2109. doi:10.1007/s40279-022-01690-3

26. Eston R. Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform. 2012;7(2):175-182. doi:10.1123/ijspp.7.2.175

27. Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc. 2008;40(2):258-263. doi:10.1249/mss.0b013e31815c6d7e

28. Ye J. Mechanisms of insulin resistance in obesity. Front Med. 2013;7(1):14-24. doi:10.1007/s11684-013-0262-6

29. Wondmkun YT. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab Syndr Obes Targets Ther. 2020;13:3611-3616. doi:10.2147/DMSO.S275898

30. Ghaith A, Chacaroun S, Borowik A, et al. Hypoxic high-intensity interval training in individuals with overweight and obesity. Am J Physiol Regul Integr Comp Physiol. 2022;323(5):R700-R709. doi:10.1152/ajpregu.00049.2022

31. Muangritdech N, Hamlin MJ, Sawanyawisuth K, et al. Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible factor-1 alpha in hypertensive patients. Eur J Appl Physiol. 2020;120(8):1815-1826. doi:10.1007/s00421-020-04410-9

32. Kilgas MA, McDaniel J, Stavres J, Pollock BS, Singer TJ, Elmer SJ. Limb blood flow and tissue perfusion during exercise with blood flow restriction. Eur J Appl Physiol. 2019;119(2):377-387. doi:10.1007/s00421-018-4029-2

33. Tegtbur U, Haufe S, Busse MW. Application and effects of blood flow restriction training. Unfallchirurg. 2020;123(3):170-175. doi:10.1007/s00113-020-00774-x

34. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521-534. doi:10.1038/nrc1910

35. McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem. 2000;275(9):6123-6128. doi:10.1074/jbc.275.9.6123

36. Babaei S, Teichert-Kuliszewska K, Monge JC, Mohamed F, Bendeck MP, Stewart DJ. Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res. 1998;82(9):1007-1015. doi:10.1161/01.res.82.9.1007

37. Yuan S, Kevil CG. Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Remodeling. Microcirc N Y N 1994. 2016;23(2):134-145. doi:10.1111/micc.12248

38. McConell GK, Rattigan S, Lee-Young RS, Wadley GD, Merry TL. Skeletal muscle nitric oxide signaling and exercise: a focus on glucose metabolism. Am J Physiol Endocrinol Metab. 2012;303(3):E301-307. doi:10.1152/ajpendo.00667.2011

39. Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561(Pt 1):1-25. doi:10.1113/jphysiol.2004.068197

40. Bradley SJ, Kingwell BA, Canny BJ, McConell GK. Skeletal muscle neuronal nitric oxide synthase micro protein is reduced in people with impaired glucose homeostasis and is not normalized by exercise training. Metabolism. 2007;56(10):1405-1411. doi:10.1016/j.metabol.2007.06.003

Downloads

  • PDF

Published

2025-04-02

How to Cite

1.
TIAN, Haodong, XIANG, Qiu, HUANG, Li, LIU, Haowei, YU, Hanglin, WU, Jinlong, LI, Hansen, KUANG, Jujiao, YAN, Xu and PENG, Li. How Does Acute Blood Flow Restriction Resistance Training Influence Free Fatty Acids in Obese Individuals?. Quality in Sport. Online. 2 April 2025. Vol. 38, p. 58841. [Accessed 15 June 2025]. DOI 10.12775/QS.2025.38.58841.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 38 (2025)

Section

Health Sciences

License

Copyright (c) 2025 Haodong Tian, Qiu Xiang, Li Huang, Haowei Liu, Hanglin Yu, Jinlong Wu, Hansen Li, Jujiao Kuang, Xu Yan, Li Peng

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 110
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

free fatty acids, blood flow restriction resistance exercise, the obese, hypoxia, vascular, angiogenesis
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop